Oktala talsystemet

Från Wikipedia
Hoppa till: navigering, sök
Talsystem
Talbasen står inom parentes

Det oktala talsystemet fungerar med samma princip som det decimala. Skillnaden är att i stället för tio (5x2, som vanligen skrivs 10) som talbas används åtta (2x2x2, som då skrivs 10).

Omvandlare[redigera | redigera wikitext]

Binärt (2) 0     1     10    11    100   101   110   111   1000  1001  1010  1011  1100  1101  1110  1111  10000
Trinärt (3) 0 1 2 10 11 12 20 21 22 100 101 102 110 111 112 120 121
Kvarternärt (4) 0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 100
Kvinärt (5) 0 1 2 3 4 10 11 12 13 14 20 21 22 23 24 30 31
Senärt (6) 0 1 2 3 4 5 10 11 12 13 14 15 20 21 22 23 24
Septenärt (7) 0 1 2 3 4 5 6 10 11 12 13 14 15 16 20 21 22
Oktalt (8) 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20
Nonärt (9) 0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17
Decimalt (10) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Undecimalt (11) 0 1 2 3 4 5 6 7 8 9 A 10 11 12 13 14 15
Duodecimalt (12) 0 1 2 3 4 5 6 7 8 9 A B 10 11 12 13 14
Tridecimalt (13) 0 1 2 3 4 5 6 7 8 9 A B C 10 11 12 13
Tetradecimalt (14) 0 1 2 3 4 5 6 7 8 9 A B C D 10 11 12
Pentadecimalt (15)    0 1 2 3 4 5 6 7 8 9 A B C D E 10 11
Hexadecimalt (16) 0 1 2 3 4 5 6 7 8 9 A B C D E F 10

Decimala talsystemet[redigera | redigera wikitext]

253_{10} = 2 \cdot 10^2 + 5 \cdot 10^1 + 3 \cdot 10^0= 200 + 50 + 3 = 253

Antal siffror som används är 10: {0,1,...,9}.

Oktala talsystemet[redigera | redigera wikitext]

Samma decimala tal 253 blir:

253_{10} = 3 \cdot 8^2 + 7 \cdot 8^1 + 5 \cdot 8^0 = 300_8 + 70_8 + 5_8 = 375_{8}

Antal siffror som används är 8: {0,1,...,7}.

Oktalkomma[redigera | redigera wikitext]

Siffrorna till höger om oktalkommat är i negativ potens av 8.

375,15_8 = 3 \cdot 8^2 + 7 \cdot 8^1 + 5 \cdot 8^0 + 1 \cdot 8^{-1} + 5 \cdot 8^{-2}

Användning av det oktala talsystemet[redigera | redigera wikitext]

Yuki-språket i Kalifornien och Pame-språket i Mexiko använder oktala system, vilket kan förstås så att man ursprungligen räknat mellanrummet mellan fingrarna (åtta) istället för att räkna själva fingrarna (tio) - eller att man inte räknat tummen som finger. Vi talar ju om lillfingret, ringfingret, långfingret och pekfingret, men inte om "tumfingret" som har mothållets funktion. Det skulle kunna vara så att man använt tummen till att räkna fingrarna med.

En hjälp till att förstå nyttan med oktalt talsystem kan vara att halvera ett tal, t ex 1, upprepade gånger. I decimalt talsystem får man då snabbt många siffror att hålla reda på.

Swedenborgs system[redigera | redigera wikitext]

År 1716 vände sig Karl XII till Emanuel Swedenborg med en begäran om ett praktiskt användbart talsystem med basen 64. Swedenborg avrådde från en så stor bas, med motiveringen att den vore svår att använda för personer med ringare fattningsförmåga än kungens. Han föreslog istället basen 8. Han utvecklar denna idé i ett två år därefter skrivet men ej offentliggjort manuskript: "En ny rekenkonst som växlas wid 8 i stelle then vahnliga wid talet 10". Siffrorna 0–7 betecknades med bokstäverna o, l, s, n, m, t, f och u (v). De används i ett positionssystem med entalssiffran sist. Talet 8 skrivs då "lo", 16 blir "so", 24 blir "no" och så vidare. Det första trebokstaviga talet 64 är "loo".

För att uttala dessa tal inskjutes en vokal mellan konsonanterna, ett a efter den första konsonanten, ett e efter den andra, sedan i, o, u och y. Det gör att man genom att bara lyssna på den sista stavelsen får grepp om talets storleksordning.

I skriften demonstrerars hur man kan räkna addition, subtraktion, multiplikation och division med dessa talbeteckningar, hur man kan konvertera mellan oktal och decimal beteckning, och där ges räknestickor för napierska logaritmer.

Swedenborgs system fick aldrig någon praktisk användning.

Datorsammanhang[redigera | redigera wikitext]

Det oktala talsystemet används med vanliga sifferbeteckningar 0–7 i vissa datorsammanhang. Då 8 är lika med 23 kan 3 bitar sammanfattas i en oktal siffra, vilket gör systemet mer praktiskt än det decimala talsystemet.

Systemet används till exempel i Unix och C, av historiska skäl, vid sidan av det hexadecimala talsystemet som allmänt används för att beskriva bitmönster.

Externa länkar[redigera | redigera wikitext]

Venn A intersect B.svg Matematikportalen – portalen för matematik på svenskspråkiga Wikipedia.