Sekant

Från Wikipedia
Hoppa till: navigering, sök
För multiplikativa inversen av cosinus, förkortad "sec", se Trigonometrisk funktion.

En sekantlinje av en kurva är en rät linje som skär två eller fler punkter på kurvan. En sekantlinje kallas oftast för en sekant, men det ordet används också ibland för enbart sträckan mellan de två punkterna på sekantlinjen. Själva ordet sekant kommer från latinets "secare" som betyder "att skära" eller "att klippa", och används också för den trigonometriska funktion som har kortformen sec.

Sekantlinjen kan användas för att approximera tangenten för en kurva i en punkt P. Om sekanten för kurvan definieras genom de två punkterna P och Q, med P fixerad och Q varierbar, så kommer sekanten att närma sig tangenten när Q närmar sig P (antag att punkten bara har en tangent).

Som en konsekvens av detta kan man säga att sekantens lutning, eller riktning, går mot tangenten.

Sekantapproximationen[redigera | redigera wikitext]

Sekantapproximation

Betrakta kurvan som definieras av y = f(x) i det kartesiska koordinatsystemet och betrakta punkten P med koordinater (c, f(c)) och en annan punkt Q med koordinater (c + Δx, f(c + Δx)). Lutningen k av sekantlinjen, uttryckta i P och Q, ges av

k = \frac{\Delta y}{\Delta x} = \frac{f(c + \Delta x) - f(c)}{(c + \Delta x) - c} = \frac{f(c + \Delta x) - f(c)}{\Delta x}

Högerledet av ovanstående ekvation är en variant av Newtons deriveringskvot. När Δx närmar sig noll kommer uttrycket närma sig derivatan av f(c) under antagandet att derivatan existerar.

Se även[redigera | redigera wikitext]