Unitär ring

Från Wikipedia
Hoppa till: navigering, sök

En unitär ring eller ring med etta är en ring R som har ett neutralt element 1R för multiplikation, alltså ett 1R є R, sådant att för varje x є R det gäller att

x·1R = 1R·x = x.

En unitär ringhomomorfism f : R → S mellan två unitära ringar R och S är en ringhomomorfism som också uppfyller att f (1R) = 1S . I många sammanhang antages alla betraktade ringar vara unitära, så att "ring" används som synonymt med "unitär ring"; men det är då ändå inte säkert att alla betraktade ringhomomorfier är unitära.

Om R är en unitär ring, och S är en delring av R, som dessutom är unitär, så måste ettan 1S vara idempotent, det vill säga uppfylla att 1S·1S = 1S. För att S skall vara en delring i unitär mening krävs däremot det starkare villkoret att 1S = 1R. Mången unitär ring innehåller andra idempotenter än ettan och nollan, och innehåller därför flera delringar som är unitära men inte delringar i unitär mening. Exempelvis är den cartesiska produkten Z×Z av ringen Z av hela tal med sig själv en unitär ring med komponentvisa operationer, som förutom (1,1) (ettan) och (0,0) (nollan) också har idempotenterna (1,0) och (0,1). Mot dessa svarar delringarna Z×{0} och {0}×Z. Ringhomomorfin fZZ×Z som ges av f(n) = (n,0) är en ringhomomorfi mellan unitära ringar men inte en unitär ringhomomorfi.