Finita differensmetoden

Från Wikipedia

Finita differensmetoden (FDM) är en numerisk metod för att finna lösningar till differentialekvationer genom att ersätta derivatorna med finita differenser.

Härledning[redigera | redigera wikitext]

Säg att man vill beräkna funktionen f i punkten x. Om f:s derivator uppfyller vissa villkor kan man Taylorutveckla f(x + Δx):

.

Om man löser ut f'(x) får man:

.

På liknande sätt, genom att Taylorutveckla f(x - Δx), kan man få approximationen

och genom att sätta ihop de två formlerna får man

.

Man kan även härleda approximationer för högre derivator, exempelvis andraderivatan:

Exempel[redigera | redigera wikitext]

Som exempel, betrakta Poissonekvationen på en kvadratisk domän

Om Laplaceoperatorn utvecklas fås

En approximativ lösning fås genom att approximera de partiella andraderivatorna med

där j och k löper över en finit uppdelning av domänen .

Antag att stegen i x- och y-led är lika, d.v.s . Då kan den approximativa versionen av ekvationen ovan skrivas om till

Denna formel är sedan grunden för iterativa lösningsmetoder, exempelvis Jacobi-metoden.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

  • Heath, Michael T. (2005). Scientific Computing - An Introductory Survey. McGraw-Hill. ISBN 007-124489-1