Fullständigt mått

Från Wikipedia
Hoppa till: navigering, sök

Ett fullständigt mått är ett begrepp inom matematisk måtteori. Ett mått är fullständigt om alla delmängder av nollmängder är mätbara. Dessa mängder kommer då nödvändigtvis ha måttet 0.

Formell definition[redigera | redigera wikitext]

Låt vara ett måttrum. Måttet µ är fullständigt om

,

dvs delmängder av A är mätbara mängder. Om måttet i måttrummet är fullständigt man kallas måttrummets fullständigt måttrummet.

Exempel[redigera | redigera wikitext]

Alla mått som man har konstruerade med yttre mått vid Carathéodorys kriterion är fullständigt: om är ett yttre mått, en µ*-mätbar mängd, och så är

och

för alla . Så att B är µ*-mätbar.

Därför är Lebesguemåttet och Hausdorffmåttet fullständiga mått.

Andra exempel är räknemåttet och Diracmåttet

Tillämpningar[redigera | redigera wikitext]

Se även[redigera | redigera wikitext]

Venn A intersect B.svg Matematikportalen – portalen för matematik på svenskspråkiga Wikipedia.