Hermitesk matris

Från Wikipedia
Hoppa till: navigering, sök

En hermitesk matris är en matris som är lika med sitt hermiteska konjugat. För matriser med endast reella element är symmetrisk matris och hermitesk matris samma sak.

Namnet kommer av den franske 1800-talsmatematikern Charles Hermite.

Definition[redigera | redigera wikitext]

En matris A har egenskapen hermitesk om och endast om AH = A, där AH är den matris som fås genom att beräkna As hermiteska konjugat. Det är detsamma som att transponera matrisen och sedan ersätta alla element med sina komplexa konjugat. För varje element i en hermitesk matris gäller:

Notera att eftersom diagonalelementen är lika med sina komplexa konjugat är dessa alltid reella.

Hermiteska matriser kan karaktäriseras på olika sätt, följande villkor är var för sig ekvivalenta med att A är en n × n hermitesk matris:

Exempel[redigera | redigera wikitext]

är hermitesk, ty:

Reella egenvärden[redigera | redigera wikitext]

En hermitesk matris har endast reella egenvärden.

Bevis[redigera | redigera wikitext]

Låt A vara en hermitesk matris med icke-trivial egenvektor x och tillhörande egenvärde , alltså .

A är hermitesk, dvs , får vi:

)

dvs är reell.

Referenser[redigera | redigera wikitext]