Weierstrass majorantsats

Från Wikipedia
Hoppa till navigering Hoppa till sök

Weierstrass majorantsats är inom matematiken en sats uppkallad efter Karl Weierstrass. Satsen används för att avgöra om en funktionsserie konvergerar likformigt.

Antag att är en följd av reella eller komplexa funktioner definierade på en mängd A. Om det finns en talföljd så att:

för alla x i A och .

Om talserien konvergerar så följer det att funktionsserien konvergerar likformigtA.

Bevis[redigera | redigera wikitext]

Eftersom konvergerar så konvergerar även punktvis för alla x till någon funktion f(x) (enligt jämförelsetestet).

Serien konvergerar likformigt till f om:

Där betecknar supremumnormen. Man får då att:

vilket visar den likformiga konvergensen.

Källor[redigera | redigera wikitext]

Funktionsföljder och serier, Lennart Hellström, Februari 2002