jω-metoden

Från Wikipedia
(Omdirigerad från J-omega-metoden)
Hoppa till navigering Hoppa till sök
En sinusformad vågrörelse kan representeras av en vektor som roterar med konstant hastighet kring origo i det komplexa talplanet

jω-metoden, j-omega-metoden, används för att beräkna strömmar och spänningar i växelströmskretsar.

Genom att representera induktanser och kapacitanser med komplexa tal kan den relativt enkla likströmsteorin tillämpas på kretsar med växelspänningar och växelströmmar av konstant frekvens.

jω-metodens användbarhet bygger på att vissa svängningsförlopp enkelt låter sig representeras av komplexa tal. En vektor som roterar med konstant hastighet kring origo i det komplexa talplanet beskriver en sinusformad svängningsrörelse enligt

och kan därmed användas för beskrivning av växelstorheter med konstant frekvens. Impedansen för en elektrisk krets kan delas upp i två ortogonala komponenter, en reaktans och en resistans och låter sig därför på ett naturligt sätt representeras av komplexa tal.

Översikt av metoden[redigera | redigera wikitext]

Vid jω-metoden används bokstaven j för den imaginära enheten. Orsaken är att bokstaven i inom elektrotekniken ofta används för att beteckna strömmar.

jω-metoden grundar sig på tre antaganden:

  • Samtliga emk (elektromotoriska krafter) är konstanta, sinusformade och av samma frekvens
  • Samtliga resistanser, induktanser och kapacitanser är oberoende av spänningar och strömmar samt av tiden
  • Alla spänningar och strömmar är sinusformade och av emk-frekvens

Tre egenskaper hos komplexa tal utnyttjas:

  • Induktans ger en fasvridning av +90 grader. För ett komplext tal motsvaras detta av en multiplikation med imaginära enheten. Den komplexa induktiva impedansen kan då skrivas som jωL
  • Kapacitans ger en fasvridning av -90 grader. För ett komplext tal motsvaras detta av en division med imaginära enheten. Den komplexa kapacitiva impedansen kan därför skrivas
  • Resistans ger en fasvridning av 0 grader vilket motsvarar ett komplext tal med imaginärdelen lika med noll och kan skrivas som R (resistansen är oberoende av frekvensen)

På grund av de komplexa talens egenskaper kan således ett komplext tal beskriva både belopp och fasvinkel för en impedans, ström eller spänning. Det går därmed att beräkna växelstorheter enligt reglerna för likströmsförlopp och samtidigt implicit behandla både belopp och fas.

Notation[redigera | redigera wikitext]

Ofta används en särskild notation för de komplexa impedanserna, strömmarna och spänningarna:

Med den notationen kan till exempel Ohms lag skrivas

Vi ser av uttrycket för Z att om , det vill säga om och är i fas, att

Förfaringssätt[redigera | redigera wikitext]

  • Istället för strömmen
där I är strömmens effektivvärde, införs den komplexa strömmen
  • Istället för spänningen
där U är spänningens effektivvärde, införs den komplexa spänningen
  • Alla resistanser R, induktanser L och kapacitanser C ersätts med motsvarande komplexa impedanser
  • Man räknar formellt med växelstorheterna och med de komplexa impedanserna som om man hade ett likströmsproblem. En sökt växelstorhet erhålls som ett komplext tal vars absoluta belopp är storhetens effektivvärde och vars argument är storhetens fasvinkel.

Effekten i komplex framställning[redigera | redigera wikitext]

Den komplexa effekten har den aktiva effekten som realdel och den reaktiva effekten som imaginärdel och dess belopp är den skenbara effektens belopp

Givet att

kan den komplexa effekten skrivas som

där P är den aktiva effekten och Q är den reaktiva effekten. Då gäller

där

är det konjugerade värdet till den komplexa spänningen
är det konjugerade värdet till den komplexa strömmen

Tillämpningar[redigera | redigera wikitext]

Seriekoppling[redigera | redigera wikitext]

Visardiagram för tre seriekopplade impedanser med resistans, induktans och kapacitans. Visaren för R används som riktfas vilket innebär att fasen för den växelström som genomlöper R också är riktfas (R är i fas med strömmen)

För ögonblicksvärdena av en seriekoppling av tre komponenter med resistans, induktans respektive kapacitans gäller

Motsvarande ekvation i komplex form:

Av visardiagrammet till höger framgår att den resulterande fasvridningen för de seriekopplade impedanserna är

vilket är samma värde som argumentet för den komplexa impedansen.

Två parallellkopplade spolar[redigera | redigera wikitext]

2-spolar.png

Två parallellkopplade spolar är anslutna till spänningen

Bestäm den totala tillförda strömmen

Inför den komplexa spänningen och strömmen

Tillämpning av de vanliga likströmslagarna på kretsen till höger ger

vilket ger

och

En växelströmsbrygga[redigera | redigera wikitext]

Växelströmsbrygga.png

Högtalaren är tyst om

Denna komplexa likhet motsvaras av två reella balansvillkor som båda måste vara uppfyllda

eller

Historik[redigera | redigera wikitext]

-metoden går tillbaka till Arthur Edwin Kennelly (1861-1939), som 1893 presenterade ett arbete om "Impedance" vid det amerikanska ingenjörsinstitutet American Institute of Electrical Engineers, AIEE.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

  • Theoretische Elektrotechnik, Karl Küpfmüller, Wolfgang Mathis, Albrecht Reibiger - Springer förlag upplaga 18, år 2008 ISBN 978-3-540-78589-7