Möbiusavbildning

Från Wikipedia
Hoppa till: navigering, sök

En Möbiusavbildning eller Möbiustransformation, efter August Ferdinand Möbius, är en bijektiv konform avbildning av det utökade komplexa talplanet (komplexa talen utökade med en punkt i oändligheten) på sig självt. En Möbiusavbildning bevarar vinklar och cirklinjer (räta linjer ses som cirklar som passerar oändlighetspunkten).

En Möbiusavbildning är en rationell funktion

där Följande gäller generellt för denna avbildning

  • punkten avbildas på
  • punkten avbildas på

Villkoret är nödvändigt för att transformationen skall vara inverterbar. Den inversa avbildningen ges av

En Möbiusavbildning bestäms entydigt om man anger tre punkter och vilka punkter de avbildas på, enligt följande: Låt , och vara de tre ursprungliga punkterna och , respektive vara de punkter de skall avbildas på. Då kan avbildningen skrivas

Spegelpunkter[redigera | redigera wikitext]

Spegelpunkten till ett komplext tal relativt en cirkel med radie och centrum i är det tal som uppfyller följande:

  • ligger på strålen utgående från genom

Man definierar dessutom . Om speciellt cirkeln är en linje , så definiera som det tal som ligger på normalen till som går genom , och som ligger lika långt från som , men på andra sidan. Exempelvis gäller om är reella tallinjen. Möbiusavbildningar överför och dess spegelpunkt relativt en cirkel på punkter och , där relativt bilden av (som är en cirkel).

Externa länkar[redigera | redigera wikitext]