Bose-Einstein-statistik

Från Wikipedia
Hoppa till: navigering, sök

Bose-Einstein-statistik, eller B–E-statistik, uppkallad efter Satyendra Nath Bose och Albert Einstein, är en sannolikhetsfördelning som beskriver fördelningen av ett stort antal bosoner. Den kan användas för att förstå till exempel supraflytande helium. Till skillnad från Fermi-Dirac-statistiken kan varje kvanttillstånd innehålla fler än ett objekt.

Begrepp[redigera | redigera wikitext]

Bosoner, till skillnad från fermioner, lyder inte under Paulis uteslutningsprincip: ett obegränsat antal partiklar kan ha samma tillstånd samtidigt, vilket medför att bosonernas uppträdande skiljer sig från fermionernas vid låga temperaturer. Alla partiklarna kan exempelvis klumpa ihop sig på den lägsta energinivån och därmed bilda det som är känt under namnet Bose–Einstein-kondensat.

Bose-Einstein-statistiken avviker från Maxwell-Boltzmann-statistiken när partiklarnas de Broglie-våglängd är jämförbar med deras inbördes avstånd. Därmed blir partiklarna ourskiljbara, vilket påverkar antalet möjliga tillstånd. För bosoner leder det således till Bose-Einstein-distributionen fBE:

f_\mathrm{BE}(E)= \frac{1}{e^{\frac{E}{k_B T}}-1},

där kB är Boltzmanns konstant, T är absolut temperatur och E är tillståndets energi.

B–E-statistik introducerades för fotoner år 1920 av Bose och år 1924 började Einstein använda statistiken även för studium av atomer.

Historia[redigera | redigera wikitext]

Under det tidiga 1920-talet blev Satyendra Nath Bose, professor vid University of Dhaka, intresserad av Einsteins teori om att ljusvågorna kunde bestå av partiklar som kallades fotoner. Boses intention var att härleda Plancks strålningsformel, som Planck i stort sett kom fram till genom att gissa. År 1900 hade Max Planck härlett sin formel genom att anpassa matematiken till empiriska fakta. Med Einsteins partikelbild kunde Bose härleda formeln för strålning genom att systematiskt utveckla en statistik för partiklar utan massa, utan att begränsas av bevarandet av partiklarnas antal. Bose härledde Plancks strålningslag genom att föreslå skilda tillstånd hos fotonen. Istället för att partiklarna skulle vara självständiga stoppade Bose in dem i celler och beskrev statistisk självständighet för fasrummets celler. Sådana system tillåter två polarisationstillstånd och visar totalt symmetriska vågfunktioner.

Bose utvecklade rätt framgångsrikt en statistisk lag som styr fotoners beteendemönster. Emellertid kunde han inte publicera sitt arbete; inga tidskrifter i Europa ville acceptera hans avhandling, eftersom de inte förstod den. Bose sände därför avhandlingen till Einstein, som såg dess betydelse och använde sitt inflytande till att få den publicerad. [1][2]

Informationsinhämtning[redigera | redigera wikitext]

Under de senaste åren har Bose-Einstein-statistik också använts som en metod för termviktning inom informationsinhämtning. Metoden är en av en samling av modeller för DFR ("Divergence From Randomness"), där den grundläggande idén är, att Bose-Einstein-statistik kan vara en användbar indikator i de fall där en särskild term och ett särskilt dokument har ett signifikant förhållande, som inte skulle ha uppträtt av en ren slump. Källkod för implementering av modellen är tillgänglig från Terrier project vid Glasgows universitet.

Källor[redigera | redigera wikitext]

  • Eugen Merzbacher, Quantum Mechanics, Toppan Company, LTD, 1961.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

Noter[redigera | redigera wikitext]

  1. ^ Hey, Anthony J. G.; Walters, Patrick (2003). The New Quantum Universe. London: Cambridge University Press. Sid. 139-141. ISBN 0521564573 
  2. ^ Rigden, John S. (2005). Einstein 1905: The Standard of Greatness. Massachusetts: Harvard University Press. Sid. 143,144. ISBN 0674015444 

Webbkällor[redigera | redigera wikitext]

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia

Litteratur[redigera | redigera wikitext]

  • Annett, James F. (2004). Superconductivity, Superfluids and Condensates. New York: Oxford University Press. ISBN 0198507550 
  • Carter, Ashley H. (2001). Classical and Statistical Thermodynamics. Upper Saddle River, NJ: Prentice-Hall. ISBN 0137792085 
  • Griffiths, David J. (2005). Introduction to Quantum Mechanics (2nd). Upper Saddle River, NJ: Pearson, Prentice Hall. ISBN 0131911759