Integralkalkyl

Från Wikipedia
Hoppa till: navigering, sök

Integralkalkyl är själva uträkningen av specifika integraler. För enklare integraler kan detta ofta göras direkt med hjälp av resultaten från analysens huvudsats, medan mer komplicerade fall kan kräva partiell integrering eller Fourieranalys.

Analysens huvudsats[redigera | redigera wikitext]

Huvudartikel: Analysens huvudsats

Sats: Om en funktion f är kontinuerligintervallet [a,b] och x är ett tal i intervallet [a,b] så är

en primitiv funktion till f, det vill säga funktionen S är deriverbar med S'(x) = f(x). Analysens huvudsats gör det möjligt att derivera parameterberoende integraler av formen

.

Insättningsformeln[redigera | redigera wikitext]

Insättningsformeln följer direkt ur analysens huvudsats, och är vad som används i all integralkalkyl.

Sats: Om en funktion f är kontinuerlig i [a,b] och F är en primitiv funktion till f så är

Exempel: Arean under grafen till funktionen f(x) = x2 + 2x på intervallet [2,4] är

Med insättningsformeln kan även integraler på formen

deriveras enligt

Se även[redigera | redigera wikitext]