Multimängd

Från Wikipedia
Hoppa till navigering Hoppa till sök

En multimängd är inom matematik en generalisering av begreppet mängd. En multimängd kan till skillnad från en mängd innehålla ett element flera gånger. I likhet med en mängd spelar dock inte ordningen av elementen någon roll i en multimängd. Det antal gånger ett element förekommer i en multimängd kallas för elementets multiplicitet. Antalet element i en multimängd, medräknat element som förekommer flera gånger, kallas för multimängdens kardinalitet.

Formell definition[redigera | redigera wikitext]

En multimängd definieras formellt som ett par (S, m) av en mängd S och en funktion m från S till de positiva heltalen. Funktionen m är multipliciteten för ett elementen i S, dvs, hur många gånger varje element förekommer i multimängden.

Om S är en mängd i ett universum U kan definitionen av en multimängd förenklas till att vara endast en funktion m från U till de naturliga talen, då m antar värdet 0 för de element som inte är i mängden.

Operationer på multimängder[redigera | redigera wikitext]

Om A och B är multimängder kan man definiera operationerna multimängdsumma , multimängdunion och multimängdsnitt genom att ett element som har multiplicitet a i A och multiplicitet b i B har multiplicitet

a + b i .
max(a, b) i .
min(a, b) i .

Exempel[redigera | redigera wikitext]

Ett heltal n kan faktoriseras unikt i primtal (upp till ordningen på faktorerna) och denna faktorisering kan uttryckas som en multimängd. Exempelvis kan 120 faktoriseras som 233151, vilket vi kan uttrycka som multimängden {2, 2, 2, 3, 5}. Den underliggande mängden är i detta fallet alla primtalsfaktorer i n.

Om två tal a och b har primtalsfaktoriseringar A och B, uttryckta som multimängder så får man att deras produkt ab har primtalsfaktorisering , deras största gemensamma delare har primtalsfaktorisering och deras minsta gemensamma multipel har primtalsfaktorisering .

Antal multimängder[redigera | redigera wikitext]

Antalet multimängder med kardinalitet k där elementen tas från en mängd med ändlig kardinalitet n brukar betecknas . Notationen är vald för att likna den för binomialkoefficienter, som även kan användas för att räkna ut talet:

där täljaren i sista bråket är en ökande potens. Detta kan jämföras med att binomialkoefficient kan skrivas som:

där täljaren i bråket är en fallande potens.

Antalet multimängder uppfyller:

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]