Sensor

Från Wikipedia
Hoppa till: navigering, sök
Infraröd sensor.

En sensor är ett samlingsbegrepp på en apparat eller anläggning som insamlar, konverterar och i vissa fall distribuerar någon form av signal eller stimuli eller data. Våra fem sinnen kan betraktas som olika biologiska sensorer.

Historia[redigera | redigera wikitext]

På 1950-talet blev industrierna större och tillverkning började alltmer automatiseras, och en nya typ av företag kom till som specialiserade sig på att förse de nya fabrikerna med sensorer. Sensorerna var som legoklossar för ingenjörerna, färdiga komponenter för att bygga system med. För exempel se Endress+Hauser, Sick och Hemomatik.

Sensorer är nödvändiga i våra tiders tillverkande industrier, oavsett om man tillverkar bilar eller hårspray. Överallt behövs sensorer som kan kontrollera nivåer, temperaturer, tryck eller att ett magasin är fullt med ämnen för tillverkningen. De är även väldigt viktiga inom medicinsk teknik där de används för att mäta storheter i kroppen med till exempel oxiometer, EEG eller EKG.

Konstruktion[redigera | redigera wikitext]

Förtydligat kan en sensor beskrivas som den kompletta sammanställning som krävs för att detektera och kommunicera en viss händelse medan en transducer är den delen inom sammanställningen som detekterar inkommen information och avger den informationen som sedan kan uttnyttjas av den kompletta sensorn.[1][2]

En sensor som är avsedd för att slå larm kallas ofta detektor. Aktiveras typiskt vid överskridande av gränsvärden, som för hög temperatur eller för lågt tryck e.t.c. Olika typer av sensorer är bland andra: radar, sonar, tryckgivare, fotodioder, kameror och mikrofoner.

Elektriska sensorer[redigera | redigera wikitext]

Ett elektriskt system interagerar med omvärlden med hjälp av sensorer och till exempel aktuatorer. Nästan alla fysiska egenskaper hos ett material som varierar i förhållande till någon stimulans kan användas för att skapa en sensor.

Induktiva givare[redigera | redigera wikitext]

Induktiva givare är nuförtiden oumbärliga inom industriell användning. I jämförelse med mekaniska brytare erbjuder de nästintill ideala förutsättningar: beröringsfri och slitagefri arbetsprincip, liksom hög kopplingsfrekvens och hög noggrannhet. Dessutom är de okänsliga mot vibrationer, smuts och fukt. Induktiva givare detekterar beröringsfritt i stort sett alla metaller. Men känselavståndet varierar mycket mellan olika metaller. 2001 kom en serie givare utan reduktionsfaktor, Condet-teknik. Samma avstånd för alla metaller samt 3 ggr normerat avstånd ( Hemomatik serie 700)

Magnetgivare[redigera | redigera wikitext]

Magnetgivare används för beröringsfri och slitagefri detektering av positioner inom automatiseringsteknologin. De används där induktiva givare inte längre räcker till. Eftersom magnetfält tränger igenom alla icke-magnetiserbara material, kan givarna detektera magneter genom väggar gjorda av rostfritt stål, aluminium, plast eller trä.

Kapacitiva givare[redigera | redigera wikitext]

Kapacitiva beröringsfria givare används för beröringsfri detektering av alla typer av objekt. I motsats till induktiva givare, som enbart detekterar metalliska objekt, kan kapacitiva givare också detektera icke-metalliska material. Typiska applikationer hittar man inom trä-, pappers-, glas-, livsmedels- och kemiindustrin. Kapacitiv givare innehåller en elektrisk spole och en kapacitanskänslig oscillator. När ett föremål med ett annat dielektrikum än luft passerar förbi så ändras kapacitansen. Spolen och oscillatorn känner kapacitansändringen och oscillatorn ändrar sin svängningsfrekvens. Givaren påverkas av ledande och icke ledande material. Fungerar bättre på metaller och fuktiga objekt.

Temperatursensorer[redigera | redigera wikitext]

Mätningar av den aktuella temperaturen är viktiga i många kontroll- och övervakningssystem. Exempel på temperatursensorer är:

  • Resistiva termometrar bestående av elektrisk ledare ändrar sin resistans då dess temperatur ändras. Dessa heter på engelska 'platinum resistance thermometers'.
  • Temperatur mätande chips, en liten IC som kan prata med en dator och meddela temperaturen lokalt. Chipset förbinds med datorn med två trådar, och ett stort antal chips kan ligga på samma två trådar - data buss. Chipsen är kalibrerade en gång för alla vid tillverkningen.
  • Termistorer ändrar också resistans i förhållande till temperaturen, men bygger istället på halvledarteknik.
  • PN-korsningar. Spänningen över en diod ändras när temperaturen ändras. Dessa sensorer är billiga, lätta att framställa och ger enkla och linjära beräkningar.
  • IR-sensorer, beröringsfria temperatursensorer. Dessa mäter den värmestrålning som en kropp utsänder och bestämmer utifrån denna IR-strålning objektets yttemperatur.
  • Termoelement är en typ av temperaturgivare som oftast används för högre temperaturområden.

Ljussensorer / Fotoceller[redigera | redigera wikitext]

Indelas i olika grupper;

Direkt avkännande fotoceller = sändare och mottagare i ett, känner av objekt som exempelvis en kartong som närmar sig, använder ingen reflektor. Allt som närmar reflekterar lite ljus - nog för att aktivera sensorn,man kan säga att direktavkännande fotoceller använder alla objekt som reflektorer.

Reflektor fotocell = sändare och mottagare i ett, sänder ut ljus till en reflektor. Reflektor fotocellen kontrollerar om ljusstrålen kommer tillbaka eller inte. Normalt aktiveras fotocellen när ljusstrålen bryts.

Sändare/Mottagare fotocell = en sändare sänder ljus till en separat mottagare, aktiveras när ljusstrålen bryts. Bra för långa avstånd.

Funktionen elektriskt kan vara; Dark on = signal när ljusstrålen bryts. Light on = signal när ljusstrålen kommer fram. På en del fotoceller kan man välja om den ska vara Dark on eller Light on.

Man skiljer också på PNP och NPN. PNP är vanligast i Sverige, där signalen arbetar i positivt läge.

Kraft[redigera | redigera wikitext]

Kraft, belastning och tryck kan mätas med belastningssensorer. Sensorn består av en tunn slinga av ledande material. En kraft deformerar sensorn varpå dess längd ökar. Detta medför att resistansen ökar. Dessutom kan flera belastningssensorer kan kopplas till annan utrustning för att mäta tryck.

Se även Piezoelektricitet och Piezoresistiv.

Rörelse[redigera | redigera wikitext]

Resistiva potentiometrar är en av de vanligaste typerna av lägessensorer. Ett resistivt objekt med en viss längd placeras på en resistiv släde. När släden ändrar läge ändras den totala resistansen och således spänningen över sensorn och detta samband är oftast linjärt. Andra typer av sensorer kan ha induktiva egenskaper som ändras beroende på läget. Rörelsen och accelerationen kan enkelt beräknas genom att derivera signalen med avseende på tiden. Det bör dock tilläggas att derivering tenderar att förstärka det brus och de fel som alltid finns i signalen. Direkt acceleration kan mätas med en så kallad accelerometer.

Användningsområden[redigera | redigera wikitext]

Järnväg[redigera | redigera wikitext]

Sensorer används ombord på järnvägsspår eller ombord på ett tåg för att upptäcka begynnande eller inträffade felaktigheter i spåret eller på ett tåg som passerar. Exempel på felaktigheter som kan detekteras är:

  • Varmgång i lager. Utnyttjar värmestrålning som kommer från lagerboxarna utanför hjulen och som avviker från omgivningen. Se video på Youtube från Hölövägen väster om Järna: [1]
  • Bromsfel (tjuvbromsning). Utnyttjar värmestrålningen från hjulringarna. Ofta kombinerat med varmgångsdetektion.
  • Skador på järnvägshjulen. Plattor från hjullåsningar. Utnyttjar vibrationer i rälsen.
  • Strömavtagare. Genom att fotografera slitskenan och göra bildanalys kan anomalier upptäckas. Genom att mäta upphöjningen av kontaktledningen kan tryckkraften kontrolleras.
En detektorkamera på Riddarholmen i Stockholm för att kontrollera kolgrafitskenan på strömavtagarna. Samma utrustning som tidigare hastighetskameror på vägarna. Syns liggande horisontellt på brostaketet ovanför tåget. En radar ser när en strömavtagare passerar och utlöser ett blixtfoto som sänds till en dator för bildanalys och ev. larm.

Man kan även säga att tidigare system haft detektorfunktioner inbyggda:

  • Rälsbrott. Spårledningarna är så konstruerade att ett rälsbrott sannolikt tolkas som "hinder" på spåret och nödbromsar ankommande tåg (ATC-baliser).
  • ATC-fel ger vanligtvis varning direkt till föraren vid passage en balisgrupp så att föraren kan stoppa tåget.
  • Växlarnas lägesindikatorer som larmar om växeltungorna inte ligger i rätt läge.

Sensorerna på spår eller tåg kan skicka larm till tågklareraren som kan stoppa tåget omedelbart eller vid nästa station samt skapa statistik som kan ge upphov till kvalitetsförbättringar och larma vid oroande trender. Detektorer är även en viktiga komponenter i det man från 2000-talet började kalla intelligenta godståg. Detektorer för järnvägar bedöms av Banverket som viktiga för att på sikt höja kvaliteten ([2]). I slutet av 2009 har man ca 160 detektorer.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

  1. ^ ”What is the difference between the sensor and the transducer?”. Answers Corporation. 2012. http://wiki.answers.com/Q/What_is_the_difference_between_the_sensor_and_the_transducer. Läst 11 december 2012. 
  2. ^ ”Transducers, Gauges, Sensors”. Transducers, Gauges, Sensors. http://sensorse.com. http://sensorse.com/pageen.html. Läst 1 oktober 2012. 

Externa länkar[redigera | redigera wikitext]