Täthetsfunktion

Från Wikipedia
Hoppa till navigering Hoppa till sök

Inom sannolikhetsteori ger täthetsfunktionen en bild av hur sannolika olika resultat är i förhållande till varandra till skillnad från fördelningsfunktionen som ger sannolikheten att variabeln antar värden som "ligger till vänster" om en given punkt på talaxeln, dvs. inom intervallet .

Ett annat vanligt namn på täthetsfunktionen är frekvensfunktion[1], men skall man vara precis gör man distinktionen frekvensfunktion eller sannolikhetsfunktion för diskreta stokastiska variabler och täthetsfunktion för kontinuerliga.[2][3][4][5]

Kontinuerlig endimensionell täthetsfunktion[redigera | redigera wikitext]

Givet en kontinuerlig slumpvariabel (stokastisk variabel) beskriver täthetsfunktionen sannolikheten att variabeln ska anta värden mellan och med hjälp av formeln

Om är den kumulativa fördelningsfunktionen för så erhålles den ur

och om är kontinuerlig i så är

.


Diskret endimensionell frekvensfunktion[redigera | redigera wikitext]

Givet en diskret stokastisk variabel ges frekvensfunktionen av

Formell definition[redigera | redigera wikitext]

För den stokastiska variabeln kan man associera en täthetsfunktion som uppfyller villkoren:

  1. Icke-negativitet för alla ,
  2. Dess integral över alla x är lika med 1.

En täthetsfunktion som inte uppfyller det sista villkoret kallas onormerad.

Referenser[redigera | redigera wikitext]

  1. ^ Frekvensfunktion i Nationalencyklopedin.
  2. ^ Statistiska institutionen Stockholms Universitet, kapitel 6 - Stokastiska variabler, sid. 4 och 7.
  3. ^ Mats Gunnarsson, Tillämpad matematik III/Statistik - Diskreta stokastiska variabler, sid 44 och 52.
  4. ^ Aila Särkkä, Flerdimensionella stokastiska variabler, sid. 1.
  5. ^ Chalmers, Liten engelsk-svensk ordlista för begrepp i sannolikhet och statistik.

Se även[redigera | redigera wikitext]