Värdemängd

Från Wikipedia
Hoppa till: navigering, sök
En funktion f med definitionsmängd (grön), värdemängd (gul) och målmängd (grå)

En värdemängd är inom matematiken mängden av alla värden en funktion (avbildning) kan anta. Det vill säga, givet en funktion från mängden X till mängden Y så är

värdemängden till f. Observera att värdemängden till f inte säkert är samma sak som målmängden (ofta kallad bildmängden) Y, utan begränsas till de värden som f kan anta; värdemängden är alltså en delmängd av Y.

För en funktion definieras urbilden av en delmängd B till Y, eller för ett element b i Y, som mängderna

skall här inte tolkas som funktionsinversen av f.

Exempel[redigera | redigera wikitext]

Funktionen

har de reella talen som definitionsområde. Då f inte kan anta ett negativt värde är värdemängden till f mängden av alla reella tal som är större än eller lika med noll, det vill säga f(x) ≥ 0 för alla reella tal x.

Funktionen

är också definierad över de reella talen. I detta fall kan g anta vilket reellt tal som helst och har därför mängden av alla reella tal som värdemängd.

Se även[redigera | redigera wikitext]

Venn A intersect B.svg Matematikportalen – portalen för matematik på svenskspråkiga Wikipedia.