Deontisk logik

Från Wikipedia
Hoppa till: navigering, sök
Logik, Formellt system
Logiska system

Deontisk logik (Pliktens logik) gren av symbolisk logik som behandlar den logiska funktionen hos begrepp som tillåtande, obligatorisk, valfri och borde. Denna klass av begrepp styr vårt dagliga liv i våra normer, lagar, affärs- och sociala organisationer, säkerhetssystem m.m.

Österrikaren Ernst Mally (1879 - 1944) från den fenomenologiska skolan i Graz, var den förste som systematiserade den deontiska logiken, han använde för ändamålet följande logiska konstanter: U, ∩, !, f och ∞.

De definieras:

  • !A = "A bör vara fallet".
  • A f B = "A fordrar B" .
  • A ∞ B = "A och B behöver varandra."
  • U = "ovillkorligen (absolut) obligatoriskt" .
  • ∩ = "ovillkorligen (absolut) förbjudet".

f, ∞, och ∩ kan även definieras:

  • f: A f B = A → !B :(A fordrar B = om A så bör B vara fallet)
  • ∞: A ∞ B = (A f B) & (B f A) : (A och B behöver varandra = (A fordrar B) & (B fordrar A))
  • ∩: ∩ = ¬U : (ovillkorligen förbjudet = ej ovillkorligen obligatoriskt )

Ernst Mallys fem informella principer (etiska axiom):

  1. Om A fordrar B och om B fordrar C, så A fordrar C.
  2. Om A fordrar B och om A fordrar C, så A fordrar B och C.
  3. A fordrar B om och endast om, det är obligatoriskt att om A så B.
  4. Det ovillkorligen obligatoriska är obligatoriskt.
  5. Det ovillkorligen obligatoriska fordrar inte sin egen negation.

formaliserade som axiom:

  1. ((A f B) & (B → C)) → (A f C)
  2. ((A f B) & (A f C)) → (A f (B & C))
  3. (A f B) ↔ !(A → B)
  4. ∃U !U [∃U = det existerar minst ett ovillkorligen obligatoriskt, ! = det bör vara fallet]
  5. ¬(U f ∩)

Standard Deontisk Logik[redigera | redigera wikitext]

(förkortas SDL eller D) Med hjälp av den klassiska satslogikens logiska konstanter och O(= Ought to be = fordrar) kan en axiomatisering se ut så här:

  • O(A→B) → (OA→OB)
  • OA → ¬O¬A

(om det fordras att om A så B, så, om det fordras att A, så fordras B, om det fordras att A, så är det tillåtet att (det vill säga ej obligatoriskt att icke) A).

FA som betyder det är förbjudet att A kan även definieras: O¬A eller ¬PA.

Den alethiska modaloperaton FYRKANT betyder "det kantianska böra som man kan". OA → MA [M betyder möjlig att.]

M om och endast om ¬FYRKANT¬

O(A/B) läses: det fordras att A under villkoret att B.

Till exempel: det tycks sant att de svältande och fattiga bör få mat.

  • |- (=har sann följd)
  • => (har sann konsekvens)
  • |-A→B=>|-OA→OB

Jørgensens Dilemma[redigera | redigera wikitext]

Enligt värdenihilismen kan inte normer vara sanna eller falska. Frågan är hur denna uppfattning ska kunna förenas med möjligheten för en deontisk logik, med tanke på att denna tycks förutsätta att vi kan tillskriva sanningsvärden till normer.

Två möjliga svar är:

  1. Deontisk logik behandlar normativa satser, inte normer i sig.
  2. Det kanske finns alternativa sanningsbegrepp som lämpar sig för normer och som möjliggör tillskrivandet av sanningsvärden till dem.

Litteratur[redigera | redigera wikitext]

Källor[redigera | redigera wikitext]

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia