Pythagoreisk trippel

Från Wikipedia
Hoppa till: navigering, sök
En egyptisk triangel.

En pythagoreisk trippel är inom talteorin tre positiva heltal x, y och z som uppfyller den diofantiska ekvationen x2 + y2 = z2. Sådana tal motsvaras av längderna på sidorna i en rätvinklig triangel eftersom de uppfyller villkoren i Pythagoras sats.

3, 4 och 5 är exempelvis en sådan taltrippel. En triangel med dessa sidolängder kallas för en egyptisk triangel.

Alla pythagoreiska tal kan fås med hjälp av formlerna

x = k(m2 - n2)
y = 2kmn
z = k(m2 + n2)

där k, m och n är positiva heltal och där m > n

Om x, y och z inte har någon gemensam delare, så kallas trippeln primitiv. En pythagoreisk trippel är primitiv om och endast om två av talen x, y och z är relativt prima.

Om k = 1 och av m och n, det ena är ett udda tal och det andra jämnt, så är den bildade trippeln primitiv.

Exempel[redigera | redigera wikitext]

Om k = 1 fås för
m = 2 och n = 1, trippeln 3, 4, 5.
m = 3 och n = 2, trippeln 5, 12, 13.
m = 4 och n = 1, trippeln 15, 8, 17.
m = 4 och n = 3, trippeln 7, 24, 25.
m = 5 och n = 2, trippeln 21, 20, 29.

Se även[redigera | redigera wikitext]

Källor[redigera | redigera wikitext]

C. Hyltén-Cavallius och L. Sandgren, Matematisk Analys I, Lunds Studentkårs Intressebyrå, Lund 1962.