Surreella tal

Från Wikipedia
Hoppa till navigering Hoppa till sök
En bild av de surreella talens träd.

Mellan heltalen ligger de reella talen. På samma sätt finns mellan Cantors ordinaltal de surreella talen.

De konstruerades av John Horton Conway i början av 1970-talet. Termen surreella tal myntades först av Donald Knuth, en kollega till Conway, i en novell 1973. Conway kopplar de surreella talen till spelet Hackenbush. Det visar sig nämligen vid studier av detta spel att varje Hackenbushställning har ett värde, som är ett surreellt tal, och att varje surreellt tal motsvaras av en Hackenbushställning.

Konstruktion av Surreella tal[redigera | redigera wikitext]

I Conway-konstruktionen, är de surreella talen konstruerade i stadier. Tal bildas genom att para ihop undergrupper av tal som redan är konstruerade. Givna undergrupper L och R med tal så att alla medlemmar av L är strängt mindre än alla medlemmar i R, då representerar paret {L|R} ett talvärde mellan alla medlemmar av L och alla medlemmar av R.

{L|R} betyder "det enklaste tal som är större än L och mindre än R". Om det inte finns ett tal på ena sidan av strecket betyder {L}, alternativt {R}, det enklaste tal som är större än L eller det enklaste tal som är mindre än R. Utifrån de reglerna, eller axiomen, kan man härleda sig fram till hela surreella talsystemet.

I det första konstruktionsstadiet finns inga tidigare existerande nummer så den enda representationen måste använda den tomma uppsättningen: {|}. Denna representation, där L och R är båda tomma, heter 0.

{|} = 0

Efterföljande steg ger uppsättningar som

{0|} = 1
{0,1|} = 2, {1|} = 2
{0,1,2|} = 3, {2|} = 3
{0,1,2,3|} = 4, {3|} = 4

och

{|0} = -1
{|-1,0} = -2, {|-1} = -2
{|-2,-1,0} = -3, {|-2} = -3
{|-3,-2,-1,0} = -4, {|-3} = -4

De surreella talen innehåller sålunda heltalen, ℤ. På liknande sätt uppstår representationer som

{0|1} = ½
{0|½} = ¼
{½|1} = ¾

så att de dyadiska rationellerna (rationella tal vars nämnare är där k är ett naturligt tal) befinner sig i de surreella talen.

Efter ett oändligt antal steg, blir oändliga delmängder tillgängliga, så att alla reella tal a kan representeras av {|}, där är uppsättningen av alla dyadiska rationellerna mindre än a och är uppsättningen av alla dyadiska rationellerna större än a (som påminner om ett Dedekindsnitt). Således är de reella talen också inbäddade i de surreella talen.

Det finns också representationer som

{0,1,2,3,…|} = ω
{0 | 1,1/2,1/4,1/8,…} = ε

Där ω är ett transfinit tal större än alla heltal och ε är en infinitesimal större än 0 men mindre än något positivt reellt tal. Dessutom kan standard aritmetiska operationer (addition, subtraktion, multiplikation och division) utökas till dessa icke reella tal på ett sätt som gör samlingen av surreella talen till ett ordnat fält, så att man kan prata om 2 • ω eller ω - 1 och så vidare.

Surreella tal-trädet[redigera | redigera wikitext]

De surreella talen brukar representeras av ett träd som grenar av i oändligt många iterationer. Här illustreras de första 3 generationerna av det surreella tal-trädet:

——————————————————————————————————— {|} = 0

—————————————— {|0} = -1 ———————————————————————————————————— {0|} = 1

———— {|-1} = -2 ——————————————— {-1|0} = -½ ———————————————— {0|1} = ½ ——————————————— {1|} = 2

{|-2} = -3 ———— {-2|-1} = -1½ ———— {-2|-1} = -¾ ————— {-½|0} = -¼ ————— {0|½} = ¼ ————— {½|1} = ¾ ————— {1|2} = 1½ ————— {2|} = 3

:

[1]

(Kan bara avläsas med brett fönster)

Överblick[redigera | redigera wikitext]

Olika delmängder kan definiera samma tal: {L|R} och {L'|R'} kan definiera samma tal även om L ≠ L' och R ≠ R '. (Ett liknande fenomen uppträder när rationella tal definieras som kvoter av heltal: 1/2 och 2/4 är olika representationer av samma rationella tal.) Strikt sett är de surreella talen ekvivalensklasser av representationer av formen {L|R} som betecknar samma tal. Samma surreella tal kan alltså ofta ha många olika definitioner:

{1|} = 2 men det är också {1|3}, {1½|4} och {1|ω}.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

Noter[redigera | redigera wikitext]

  1. ^ ”John Conway: Surreal Numbers - How playing games led to more numbers than anybody ever thought of”. itsallaboutmath. 14 juli 2016. https://www.youtube.com/watch?v=1eAmxgINXrE&t. Läst 22 februari 2019.  Föreläsning av John Conway, skaparen av de surreella talen.

Tryckta källor[redigera | redigera wikitext]

  • Donald Knuth's original exposition: Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness, 1974, ISBN 0-201-03812-9.
  • Conway, John H. (2000-12-11) [1976]. On Numbers and Games (2 ed.). CRC Press. ISBN 9781568811277.