Romerska talsystemet

Från Wikipedia
Hoppa till: navigering, sök
Romerska siffror används ofta för att datera byggnader. Här är Ignaberga nya kyrka daterad till 1887. Ovanför står den dåvarande svenske kungens namn, vars regentnummer "den andre" också är skrivet med romerska siffror.
Katarina kyrkas tornur har en urtavla med romerska siffror. Observerar att siffran "4" skrivs med fyra streck, vilket är vanligt för ur med romerska siffror.

Romerska siffror är ett talsystem bestående av vanligtvis sju grundsiffror I (1), V (5), X (10), L (50), C (100), D (500) och M (1000). Ytterligare tecken brukades i ett utökat system, som romarna införde under 200-talet f.Kr. enligt tabellen nedan, men också för att beteckna större tal samt bråk. Romarna inkluderade aldrig noll i sitt talsystem och kunde aldrig hantera noll i sin aritmetik.

Talsystemets principer[redigera | redigera wikitext]

Varje bokstav motsvarar en fix siffra som sedan sammanfogas för att bilda större tal. Systemet byggs främst upp av I=1, V=5, X=10, L=50, C=100, D=500 och M=1000. Man kan sätta ett streck ovanför en bokstav för att markera att den är värd tusen gånger så mycket, Ī är alltså samma sak som M. Ett vertikalt streck på vardera sidan av ett tal markerar att det är värt hundra gånger så mycket, |I| är alltså samma sak som C.

Eftersom romerska tal har ett fast värde (alltså inte olika värde för olika position som de arabiska talen i decimalsystemet = våra tal), sker sammansättningen till andra tal efter följande regler:

  1. Lika taltecken som återkommer omedelbart efter varandra, ska adderas: II = 1 + 1 = 2, XX = 10 + 10 = 20, CCC = 100 + 100 + 100 = 300. Detta gäller dock bara tecknen I, X, C och M, aldrig V, L och D. Det enda tecken som får stå i grupper om fyra eller mer är M (MMMMM = 5000), dock kan 4 skrivas som IIII (1 + 1 + 1 + 1) och 40 som XXXX (10 + 10 + 10 + 10).
  2. Står ett mindre taltecken före ett större, ska det subtraheras: IV = 5 - 1 = 4, IX = 10 - 1 = 9, CM = 1000 - 100 = 900.
  3. Står ett mindre taltecken efter ett större ska det adderas: VI = 5 + 1 = 6, XI = 10 + 1 = 11, VIII = 5 + 1 + 1 + 1 = 8. Ex.: MCMLXIV (1000 + 1000 - 100 + 50 + 10 + 5 - 1 = 1964), MCMXCIX (1000 + 1000 - 100 + 100 - 10 + 10 - 1 = 1999), MDCCC (1000 + 500 + 100 + 100 + 100 = 1800), MCMLXIX (1000 + 1000 - 100 + 50 + 10 + 10 - 1 = 1969), MMX (1000 + 1000 + 10 = 2010).

Observera att mindre tal inte får subtraheras från större om skillnaden mellan dem är för stor. I (1) får exempelvis bara subtraheras från V (5) och X (10), inte från L (50) och högre. Som i exemplet nedan kan 1999 alltså inte skrivas MIM (1000 + 1000 - 1) utan måste skrivas MCMXCIX (1000 + 1000 - 100 + 100 - 10 + 10 - 1).

Exemplet 1999[redigera | redigera wikitext]

En regel, som tillämpades av romarna, var att ett mindre tal som sätts före ett större tal måste vara minst 1/10 av det större talet. Det vill säga I kan bara sättas till vänster om V eller X, X kan bara sättas till vänster om L eller C, och C kan bara sättas till vänster om D och M.

Sålunda kan 99 inte skrivas IC, utan måste skrivas som XCIX. På samma vis kan inte 999 skrivas som IM och 1999 kan inte vara MIM.

Romarna använde sig ofta av fyra likadana tecken som adderades, både för I (IIII), X (XXXX) och C (CCCC). Detta medförde att beteckningssystemet inte var entydigt och en siffra kunde skrivas på flera olika sätt. Betrakta 1999 som exempel.

De möjliga kombinationerna för 1999 blir

M     (CM eller DCCCC)  (XC eller LXXXX)  (IX eller VIIII)

1000------900------------------90------------------9

Detta medför åtta olika sätt att ange 1999:

  • MCMXCIX
  • MCMXCVIIII
  • MCMLXXXXIX
  • MCMLXXXXVIIII
  • MDCCCCXCIX
  • MDCCCCXCVIIII
  • MDCCCCLXXXXIX
  • MDCCCCLXXXXVIIII

Det har ansetts att när subtraktionsmetoden användes av romarna och då man subtraherade från en del av talet (inte från hela talet) så undvek man att lägga subtraktionen på slutet. Alltså skrev man XLIIII för 44, men inte XXXXIV. Med denna regel bortfaller fem av skrivsätten och följande tänkbara skrivsätt kvarstår för 1999:

  • MCMXCVIIII
  • MCMLXXXXVIIII
  • MDCCCCLXXXXVIIII

Det tredje och längsta skrivsättet är det som alla kunde förstå genom att bara addition tillämpades. Det andra skrivsättet kan förkastas på grund av den ologiska blandningen av addition och subtraktion. Det första skrivsättet kan också anses som hållbart.

Efter romartiden fastlades principerna för att skriva romerska tal med att man alltid skulle använda sig av subtraktionsprincipen. Av denna regel följer att 1999 ska skrivas enligt MCMXCIX, men detta var alltså inte en regel från romartiden.[källa behövs]

Hur romerska tecken skrivs[redigera | redigera wikitext]

De romerska siffrorna kan också skrivas med gemener (små bokstäver), detta rekommenderas dock ej då missförstånd lätt kan uppstå.

Inom Unicode-uppsättningen är teckenplatserna U+2160 till U+2182 avsedda för romerska siffror. Dessa tecken är dock främst avsedda att användas i text med kinesiska tecken, som skrivs uppifrån och ner. Det är rekommenderat att skriva romerska siffror med vanliga bokstäver, om det går.[1]

Användning av romerska siffror[redigera | redigera wikitext]

I samband med personnamn[redigera | redigera wikitext]

Idag används de romerska siffrorna för att ange regentnummer i bland annat kunganamn (till exempel Karl XII och Gustav III) och påvenamn (till exempel Benedictus XVI). I vissa länder, kanske särskilt i USA, brukar ett barn som får precis samma namn som en förälder åtskiljas från föräldern med romersk siffra efter hela namnet, särskilt om personen har samma namn i tredje led eller senare (medan den första som får samma namn brukar benämnas "junior" i stället för II).

Inom statsvetenskapen brukar man skilja olika regeringar i samma land åt genom att benämna dem med namnet på regeringschefen. Om samma person är regeringschef flera gånger, lägger man då till en romersk siffra i kronologisk ordning för att skilja ministärerna från varandra, till exempel Kekkonen I, Fälldin III. Siffran uttalas då inte som ett ordningstal utan som ett grundtal ("regeringen Fälldin tre").

I andra sammanhang[redigera | redigera wikitext]

De används också som sidnumrering i böcker för de sidor som föregår förstasidan (såsom förord och innehållsförteckning), inom kemin för att ange oxidationstal och i listor av olika slag för att ange särskild ordning.

Romerska siffror används ofta också för att markera årtal i slutet på filmer och TV-program, för copyright och produktionsår. Även på byggnader används stundom fortfarande romerska siffror för att ange (färdig-)byggnadsåret. Till exempel "Anno Domini MDCCLXIV" för "Guds år 1764".

Inom sport används i bland annat Sverige romerska siffror vid numrering av divisionerna. Division 1 blir till exempel Division I. Siffran uttalas som grundtal ("Division ett").

Latinska (romerska) tal (Numeri Latini)[redigera | redigera wikitext]

Arabiska Romerska Grundtal Ordningstal
1 I unus una unum primus prima primum
2 II duo duae duo secundus secunda secundum
3 III tres tria tertius
4 IV quattuor quartus
5 V quinque quintus
6 VI sex sextus
7 VII septem septimus
8 VIII octo octavus
9 IX novem nonus
10 X decem decimus
11 XI undecim undecimus
12 XII duodecim duodecimus
13 XIII tredecim tertius decimus
14 XIV quattuordecim quartus decimus
15 XV quindecim quintus decimus
16 XVI sedecim sextus decimus
17 XVII septendecim septimus decimus
18 XVIII duodeviginti duodevicesimus
19 XIX undeviginti undevicesimus
20 XX viginti vicesimus
21 XXI unus et viginti unus et vicesimus
viginti unus vicesimus primus
22 XXII duo et viginti alter et vicesimus
viginti duo vicesimus alter
30 XXX triginta tricesimus
40 XL quadraginta quadragesimus
40 F quadraginta (F rarum scriptum)
50 L quinquaginta quinquagesimus
50 K quinquaginta (K rarum scriptum)
60 LX sexaginta sexagesimus
70 LXX septuaginta septuagesimus
70 S septuaginta (S rarum scriptum)
80 LXXX octoginta octogesimus
80 R octoginta (R rarum scriptum)
90 XC nonaginta nonagesimus
90 N nonaginta (N rarum scriptum)
100 C centum centesimus
150 CL centum quinquaginta
150 Y centum quinquaginta (Y rarum scriptum)
160 CLX centum sexaginta
160 T centum sexaginta (T rarum scriptum)
200 CC ducenti ducentesimus
200 H ducenti (H rarum scriptum)
250 CCL
250 E (E rarum scriptum)
300 CCC trecenti trecentesimus
300 B trecenti (B rarum scriptum)
400 CD quadringenti quadringentesimus
400 G vel P
500 D quingenti quingentesimus
500 A vel Q
600 DC sescenti sescentesimus
700 DCC septingenti septingentesimus
800 DCCC octingenti octingentesimus
900 CM nongenti nongentesimus
1000 M mille millesimus
2000 MM duo milia bis millesimus

Det finns inget tecken för noll; dock har (efter romartiden) N (nulla/nullæ) använts för noll men kan också betyda 90.

IIII brukar användas istället för IV (för 4) eftersom IV var en gud. Detta skrivsätt förekommer ofta på klockor.

"Rarum scriptum" = sällsynt brukat skrivsätt.

Fraktioner[redigera | redigera wikitext]

Bokstaven S infördes för att beteckna 1/2. Vidare använde man ett streck (bindestreck) för att beteckna 1/12. Två streck (=) blev då 2/12 = 1/6 och så vidare. Följande tabell sammanfattar fraktionsbeteckningar:

- 1/12
= 2/12 = 1/6
-= 3/12 = 1/4
== 4/12 = 1/3
-== 5/12
S 1/2
S- 1/2 + 1/12 = 7/12
S= 1/2 + 2/12 = 8/12 = 2/3
S-= 1/2 + 3/12 = 9/12 = 3/4
S== 1/2 + 4/12 = 10/12= 5/6
S-== 1/2 + 5/12 = 11/12

Icke-positiva tal[redigera | redigera wikitext]

Det fanns för romarna inget tecken för noll. Senare har dock N använts. N kom från ordet (nulla/nullæ) som betyder inget. Dock kan N även betyda 90. Även 0 (vanlig nolla) har använts för 0. Negativa tal fanns inte heller. Negativa tal infördes efter medeltiden i Europa. För att till exempel beteckna ekonomiska förluster skrev man istället ordet förlust eller liknande, och talet som vanligt, eller hade olika kolumner för inkomster och utgifter, dubbel bokföring.

Alternativa former[redigera | redigera wikitext]

Under medeltiden utvecklades varianter för stora tal.

CIƆ betyder 1000, som man sätter ett till C på vänster sida och ett Ɔ på höger sida så multipliceras talet med tio, alltså CIƆ = 1'000, CCIƆƆ = 10'000, CCCIƆƆƆ = 100'000, och så vidare. Om du har mer Ɔ på höger sida än C på vänster sida (det kan inte vara tvärtom) följer regeln:

X = 100 sgn(C) 10C + 50 sgn(Ɔ - C) 10Ɔ - C

där X = resultatet, C = antal C, Ɔ = antal Ɔ och sgn(X) är signum för X, sgn(X) = 0 om X = 0 och 1 om X > 0. Formeln gäller alltid.

Alltså:

Grundtal:   CIƆ = 1'000 CCIƆƆ = 10'000 CCCIƆƆƆ = 100'000
1 extra Ɔ: IƆ = 500 CIƆƆ = 1'500 CCIƆƆƆ = 10'500 CCCIƆƆƆƆ = 100'500
2 extra Ɔn: IƆƆ = 5'000 CIƆƆƆ = 6'000 CCIƆƆƆƆ = 15'000 CCCIƆƆƆƆƆ = 105'000
3 extra Ɔn: IƆƆƆ = 50'000 CIƆƆƆƆ = 51'000 CCIƆƆƆƆƆ = 60'000 CCCIƆƆƆƆƆƆ = 150'000
4 extra Ɔn: IƆƆƆƆ = 500'000 CIƆƆƆƆƆ = 501'000 CCIƆƆƆƆƆƆ = 510'000 CCCIƆƆƆƆƆƆƆ = 600'000

Vänsterparentes "(" kan användas iställer för C och högerparentes ")" istället för Ɔ. När man skriver flera tal och adderar dem använder man en liten centrerat uppåt pekande triangel.

En bokstav för inte stå före en bokstav som är mer än tio gånger så stort. Till exempel får C inte stå efter I eller V, utan bara X och bokstäver högre än X. Denna regel följs inte alltid, XCIX kan förkortas IC. När man skriver 1999 skriver man MCMXCIX, men det kan också förkortas mot reglerna till IMM eller MIM. Dock, om man vill skriva ett negativt tal så skriver man talet positivt följt av tecknet för 0.

Se även[redigera | redigera wikitext]

Externa länkar[redigera | redigera wikitext]

Källor[redigera | redigera wikitext]

  1. ^ The Unicode Consortium (3 november 2006) [1991]. ”15. Symbols” (på en) (PDF). The Unicode Standard (version 5.0). Addison-Wesley Professional. ISBN 0-321-48091-0. http://www.unicode.org/versions/Unicode5.0.0/ch15.pdf. Läst 2 augusti 2008