Tidsaxel över den avlägsna framtiden: Skillnad mellan sidversioner

Från Wikipedia
Innehåll som raderades Innehåll som lades till
Hannibal (Diskussion | Bidrag)
påbörjar arbete
(Ingen skillnad)

Versionen från 27 mars 2015 kl. 23.33

Denna sandlåda finns i artikelnamnrymden. Flytta antingen sidan till din användarnamnrymd, eller ta bort {{Användarsandlåda}}-mallen.

A dark gray och red sphere representing the jorden lies against a black background to the right of an orange circular object representing the Sun
What the jorden might look like sju miljarder år framåt i tiden, after the Sun has entered the red giant phase

While predictions of the framtid can never be absolutely certain,[1] present scientific understanding in various fields has allowed a projected course for the farthest framtid händelses to be sketched out, if only in the broadest strokes. These fields include astrofysik, which has revealed how planets och stars form, interact, och die; partikel fysik, which has revealed how matter behaves at the smallest scales; evolutionary biologi, which predicts how life will evolve over time, och plate tectonics, which shows how continents shift over millennia.

All predictions of the framtid of the jorden, the Solar System, och the universum must account for the second law of thermodynamics, which states that entropy, or a loss of the energi available to do work, must increase over time.[2] Stars händelseually must exhaust their supply of hydrogen fuel och burn out. Close encounters will gravitationally fling planeter från their star systems, och star systems från galaxies.[3] händelseually, matter itself will come under the influence of radioactive decay, as even the most stable materials break apart into subatomic partikels.[4] nuvarande data suggests that the universum is flat, och thus, will not collapse in on itself after a finite time,[5] och the infinite framtid potentially allows for the occurrence of a number of massively improbable händelses, såsom the formation of a Boltzmann brain.[6]

The timelines displayed here cover händelses från roughly eight thousand år framåt i tiden[a] to the farthest reaches of framtid time. A number of alternate framtid händelses are listed to account for questions still unresolved, såsom whether humans will become extinct, whether protons decay, or whether jorden will survive solens expansion into a red giant.

Key

händelse is determined via
Astronomi och astrofysik Astronomi och astrofysik
Geologi och planetär science Geologi och planetär science
Biologi Biologi
partikel fysik partikel fysik
matematik matematik
teknologi och kultur teknologi och kultur

framtid of the jorden, the Solar System och the universum

Antal år framåt i tiden händelse
Geologi och planetär science 10,000 If a failure of the Wilkes Subglacial Basin "ice plug" in the next few centuries were to endanger the East Antarctic Ice Sheet, it will take up to this long to melt completely. Sea levels would rise 3 to 4 meters.[7] (One of the potential long-term effects of global warming, this is separate från the shorter term threat of the West Antarctic Ice Sheet.)
Astronomi och astrofysik 25,000 The northern Martian polar ice cap could recede as Mars reaches a warming peak of the northern hemisphere during the ~50,000 year perihelion precession aspect of its Milankovitch cycle.[8][9]
Astronomi och astrofysik 36,000 The small red dvärg star Ross 248 passes medin 3.024 ljus år of jorden, becoming the closest star to the Sun.[10] It will recede after about 8,000 år, making first Alpha Centauri och then Gliese 445 the nearest stars[10] (see timeline).
Geologi och planetär science 50,000 The nuvarande interglacial period ends[11] sending the jorden back into a glacial period of the nuvarande ice age, regardless of the effects of anthropogenic global warming.

Niagara Falls will have eroded away the remaining 32 km to Lake Erie, och ceased to exist.[12]

The many glacial lakes of the Canadian Shield will have been erased by post-glacial rebound och erosion.[13]

Astronomi och astrofysik 50,000 The length of the day used for astronomisk timekeeping reaches about 86,401 SI seconds, due to lunar tides braking the jorden's rotation. Under the present-day timekeeping system, a leap second will need to be added to the clock every day.[14]
Astronomi och astrofysik 100,000 The proper motion of stars across the celestial sphere, which is the result of their movement genom the galax, renders many of the constellations unrecognisable.[15]
Geologi och planetär science 100,000[b] jorden will likely have undergone a supervolcanic eruption large enough to erupt 400 km3 of magma.[16]
Biologi 100,000 Native North American jordenworms, såsom Megascolecidae, will have naturally spread north genom the United States Upper Midwest to the Canadian border, recovering från the Laurentide ice sheet glaciation (38°N to 49°N), assuming a migration rate of 10 m / year.[17] (However, non-native invasive jordenworms of North America have already been introduced by humans on a much shorter timescale, causing a shock to the regional ecosystem.)
Geologi och planetär science 100,000+ As one of the long-term effects of global warming, 10% of anthropogenic carbon dioxide will still remain in a stabilized atmosphere.[18]
Geologi och planetär science 250,000 Lōʻihi, the youngest volcano in the Hawaiian–Emperor seamount chain, rises above the surface of the ocean och becomes a new volcanic island.[19]
Astronomi och astrofysik 100,000[b] The hypergiant star VY Canis Majoris will have likely exploded in a hypernova.[20]
Astronomi och astrofysik 500,000[b] jorden will have likely been hit by a meteorite of roughly 1 km in diameter, assuming it cannot be averted.[21]
Geologi och planetär science 500,000 The rugged terrain of Badlands National Park in South Dakota will erode away completely.[22]
Geologi och planetär science 950,000 Meteor Crater, a large impact crater in Arizona considered the "freshest" of its kind, will be eroded away by this time.[23]
Geologi och planetär science 1 miljoner[b] jorden will likely have undergone a supervolcanic eruption large enough to erupt 3,200 km3 of magma; an händelse comparable to the Toba supereruption 75,000 år ago.[16]
Astronomi och astrofysik 1 miljoner[b] Highest estimated time tills the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in dayljus.[24][25]
Astronomi och astrofysik 1.4 miljoner The star Gliese 710 passes as close as 1.1 ljus år to solenbefore moving away. This may gravitationally perturb members of the Oort cloud, a halo of icy bodies orbiting at the edge of the Solar System, thereafter increasing the likelihood of a cometary impact in the inner Solar System.[26]
Biologi 2 miljoner Estimated time required for coral reef ecosystems to physically rebuild och biologically recover från nuvarande human-caused ocean acidification.[27]
Geologi och planetär science 2 miljoner+ The Grand Canyon will erode further, deepening sljusly, but principally widening into a broad valley surrounding the Colorado River.[28]
Astronomi och astrofysik 2.7 miljoner Average orbital half-life of nuvarande Centaur objekt, that are unstable because of gravitational interaction of the several Outer planeter.[29] See predictions for notable Centaurs.
Astronomi och astrofysik 8 miljoner månenPhobos comes medin 7,000 km of Mars, the Roche limit, at which point tidal forces will disintegrate månenoch turn it into a ring of orbiting debris that will continue to spiral in toward the planet.[30]
Geologi och planetär science 10 miljoner The widening East African Rift valley is flooded by the Red Sea, causing a new ocean basin to divide the continent of Africa[31] och the African Plate into the newly formed Nubian Plate och the Somali Plate.
Biologi 10 miljoner Estimated time for full recovery of biodiversity after a potential Holocene extinction, if it were on the scale of the five previous major extinction händelses.[32]

Even medout a mass extinction, by this time most nuvarande species will have disappeared genom the background extinction rate, med many clades gradually evolving into new forms.[33] (However, medout a mass extinction, there will now be an ecological crisis requiring miljoners of år of recovery.)

Astronomi och astrofysik 11 miljoner The ring of debris around Mars hits the surface of the planet.[30]
Geologi och planetär science 50 miljoner The Californian coast begins to be subducted into the Aleutian Trench due to its northward movement along the San Andreas Fault.[34]

Africa's collision med Eurasia closes the Mediterranean Basin och creates a mountain range similar to the Himalayas.[35]

The Appalachian Mountains peaks will largely erode away,[36] weathering at 5.7 Bubnoff units, although topography will actually increase as regional valleys deepen at twice this rate.[37]

Geologi och planetär science 50 - 60 miljoner The Canadian Rockies will erode away to a plain, assuming a rate of 60 Bubnoff units.[38] (The Southern Rockies in the United States are eroding at a somewhat slower rate.[39])
Geologi och planetär science 50 - 400 miljoner Estimated time for jorden to naturally replenish its fossil fuel reserves.[40]
Geologi och planetär science 80 miljoner The Big Island becomes the last of the nuvarande Hawaiian Islands to sink beneath the waves.[41]
Astronomi och astrofysik 100 miljoner[b] jorden will have likely been hit by a meteorite comparable in size to the one that triggered the K–Pg extinction 65 miljoner år ago.[42]
Geologi och planetär science 100 miljoner Upper estimate for livslängd of the rings of Saturn in their nuvarande state.[43]
matematik 230 miljoner Beyond this time, the orbits of the planeter become impossible to predict due to the limitations of Lyapunov time.[44]
Astronomi och astrofysik 240 miljoner från its present position, the Solar System completes one full orbit of the Galactic center.[45]
Geologi och planetär science 250 miljoner All the continents on jorden may fuse into a supercontinent. Three potential arrangements of this configuration have been dubbed Amasia, Novopangaea, och Pangaea Ultima.[46][47]
Geologi och planetär science 400–500 miljoner The supercontinent (Pangaea Ultima, Novopangaea, or Amasia) will have likely rifted apart.[47]
Astronomi och astrofysik 500–600 miljoner[b] Estimated time tills a gamma ray burst, or massive, hyperenergetic supernova, occurs medin 6,500 ljus-år of jorden; close enough for its rays to affect jorden's ozone layer och potentially trigger a mass extinction, assuming the hypothesis is correct that a previous such explosion triggered the Ordovician–Silurian extinction händelse. However, the supernova would have to be precisely oriented relative to jorden to have any negative effect.[48]
Astronomi och astrofysik 600 miljoner Tidal acceleration moves the Moon far enough från jorden that total solar eclipses are no longer possible.[49]
Geologi och planetär science 600 miljoner solens increasing luminosity begins to disrupt the carbonate–silicate cycle; higher luminosity increases weathering of surface rocks, which traps carbon dioxide in the ground as carbonate. As water evaporates från the jorden's surface, rocks harden, causing plate tectonics to slow och händelseually stop. medout volcanoes to recycle carbon into the jorden's atmosphere, carbon dioxide levels begin to fall.[50] By this time, carbon dioxide levels will fall to the point at which C3 photosynthesis is no longer possible. All plants that utilize C3 photosynthesis (~99 percent of present-day species) will die.[51]
Geologi och planetär science 800 miljoner Carbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible.[51] Free oxygen och ozone disappear från the atmosphere. Multicellular life dies out.[52]
Geologi och planetär science 1 miljarder[c] solens luminosity has increased by 10 percent, causing jorden's surface temperatures to reach an average of ~320 K (47 °C, 116 °F). The atmosphere will become a "moist greenhouse", resulting in a runaway evaporation of the oceans.[53] Pockets of water may still be present at the poles, allowing abodes for simple life.[54][55]
Geologi och planetär science 1.3 miljarder Eukaryotic life dies out due to carbon dioxide starvation. Only prokaryotes remain.[52]
Geologi och planetär science 1.5–1.6 miljarder solens increasing luminosity causes its circumstellär habitable zone to move outwards; as carbon dioxide increases in Mars's atmosphere, its surface temperature rises to levels akin to jorden during the ice age.[52][56]
Geologi och planetär science 2.3 miljarder The jorden's outer core freezes, if the inner core continues to grow at its nuvarande rate of 1 mm per year.[57][58] medout its liquid outer core, the jorden's magnetic field shuts down,[59] och charged partikels emanating från the Sun gradually deplete the atmosphere.[60]
Geologi och planetär science 2.8 miljarder jorden's surface temperature, even at the poles, reaches an average of ~420 K (147 °C, 296 °F). At this point life, now reduced to unicellular colonies in isolated, scattered microenvironments såsom high-altitude lakes or subsurface caves, will completely die out.[50][61][d]
Astronomi och astrofysik 3 miljarder Median point at which månens increasing distance från the jorden lessens its stabilising effect on the jorden's axial tilt. As a consequence, jorden's true polar wander becomes chaotic och extreme.[62]
Astronomi och astrofysik 3.3 miljarder 1 percent chance that Merkurius's orbit may become so elongated as to collide med Venus, sending the inner Solar System into chaos och potentially leading to a planetär collision med jorden.[63]
Geologi och planetär science 3.5 miljarder Surface conditions on jorden are comparable to those on Venus today.[64]
Astronomi och astrofysik 3.6 miljarder Neptune's moon Triton falls genom the planet's Roche limit, potentially disintegrating into a planetär ring system similar to Saturn's.[65]
Astronomi och astrofysik 4 miljarder Median point by which the Andromeda galax will have collided med the Milky Way, which will thereafter merge to form a galax dubbed "Milkomeda".[66] The planeter of the Solar System are expected to be relatively unaffected by this collision.[67][68][69]
Astronomi och astrofysik 5 miljarder med the hydrogen supply exhausted at its core, solenleaves the main sequence och begins to evolve into a red giant.[70]
Astronomi och astrofysik 7.5 miljarder jorden och Mars may become tidally locked med the expanding Sun.[56]
Astronomi och astrofysik 7.59 miljarder The jorden och Moon are very likely destroyed by falling into the Sun, just before solenreaches the tip of its red giant phase och its maximum radius of 256 times the present day value.[70][e] Before the final collision, månenpossibly spirals below jorden's Roche limit, breaking into a ring of debris, most of which falls to the jorden's surface.[71]
Astronomi och astrofysik 7.9 miljarder solenreaches the tip of the red-giant branch of the Hertzsprung–Russell diagram, achieving its maximum radius of 256 times the present day value.[72] In the process, Merkurius, Venus och very likely jorden are destroyed.[70]

During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.[73]

Astronomi och astrofysik 8 miljarder Sun becomes a carbon-oxygen white dvärg med about 54.05 percent its present mass.[70][74][75][f]
Astronomi och astrofysik 22 miljarder The end of the universum in the Big Rip scenario, assuming a model of dark energi med w = −1.5.[76] Observations of galax cluster speeds by the Chandra X-ray Observatori suggest that this will not occur.[77]
Astronomi och astrofysik 50 miljarder If the jorden och Moon are not engulfed by the Sun, by this time they will become tidelocked, med each showing only one face to the other.[78][79] Thereafter, the tidal action of solenwill extract angular momentum från the system, causing the lunar orbit to decay och the jorden's spin to accelerate.[80]
Astronomi och astrofysik 100 miljarder The universum's expansion causes all galaxies beyond the Milky Way's Local Group to disappear beyond the cosmic ljus horizon, removing them från the observable universum.[81]
Astronomi och astrofysik 150 miljarder The cosmic microwave background cools från its nuvarande temperature of ~2.7 K to 0.3 K, rendering it essentially undetectable med nuvarande teknologi.[82]
Astronomi och astrofysik 450 miljarder Median point by which the ~47 galaxies[83] of the Local Group will coalesce into a single large galax.[4]
Astronomi och astrofysik 800 miljarder Expected time when the net ljus emission från the combined Milkomeda galax begins to decline as the red dvärg stars pass genom their blue dvärg stage of peak luminosity.[84]
Astronomi och astrofysik 1012 (1 biljoner) Low estimate for the time tills star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.[4]

The universum's expansion, assuming a constant dark energi density, multiplies the wavelength of the cosmic microwave background by 1029, exceeding the scale of the cosmic ljus horizon och rendering its evidence of the Big Bang undetectable. However, it may still be possible to determine the expansion of the universum genom the study of hypervelocity stars.[81]

Astronomi och astrofysik 3×1013 (30 biljoner) Estimated time for stars to undergo a close encounter med another star in local stellär neighborhoods. Whenever two stars (or stellär remnants) pass close to each other, their planeter' orbits can be disrupted, potentially ejecting them från the system entirely. On average, the closer a planet's orbit to its parent star the longer it takes to be ejected in this manner, because it is gravitationally more tightly bound to the star.[85]
Astronomi och astrofysik 1014 (100 biljoner) High estimate for the time tills normal star formation ends in galaxies.[4] This marks the transition från the Stelliferous Era to the Degenerate Era; med no free hydrogen to form new stars, all remaining stars slowly exhaust their fuel och die.[3]
Astronomi och astrofysik 1.1–1.2×1014 (110–120 biljoner) Time by which all stars in the universum will have exhausted their fuel (the longest-lived stars, low-mass red dvärgs, have livslängds of roughly 10–20 biljoner år).[4] After this point, the stellär-mass objekt remaining are stellär remnants (white dvärgs, neutron stars och black holes). Brown dvärgs also remain.

Collisions between brown dvärgs will create new red dvärg stars on a marginal level: on average, about 100 stars will be shining in the galax. Collisions between stellär remnants will create occasional supernovae.[4]

Astronomi och astrofysik 1015 (1 biljard) Estimated time tills stellär close encounters detach all planeter in star systems (including the Solar System) från their orbits.[4]

By this point, solenwill have cooled to five degrees above absolute zero.[86]

Astronomi och astrofysik 1019 to 1020 (10–100 kvintillion) Estimated time tills 90% – 99% of brown dvärgs och stellär remnants (including the Sun) are ejected från galaxies. When two objekt pass close enough to each other, they exchange orbital energi, med lower-mass objekt tending to gain energi. genom repeated encounters, the lower-mass objekt can gain enough energi in this manner to be ejected från their galax. This process händelseually causes the galax to eject the majority of its brown dvärgs och stellär remnants.[4][87]
Astronomi och astrofysik 1020 (100 kvintillion) Estimated time tills the jorden collides med the black dvärg Sun due to the decay of its orbit via emission of gravitational radiation,[88] if the jorden is not ejected från its orbit by a stellär encounter or engulfed by solenduring its red giant phase.[88]
Astronomi och astrofysik 1030 Estimated time tills those stars not ejected från galaxies (1% – 10%) fall into their galaxies' central supermassive black holes. By this point, med binary stars having fallen into each other, och planeter into their stars, via emission of gravitational radiation, only solitary objekt (stellär remnants, brown dvärgs, ejected planeter, black holes) will remain in the universum.[4]
partikel fysik 2×1036 The estimated time for all nucleons in the observable universum to decay, if the proton half-life takes its smallest possible value (8.2×1033 år).[89][90][g]
partikel fysik 3×1043 Estimated time for all nucleons in the observable universum to decay, if the proton half-life takes the largest possible value, 1041 år,[4] assuming that the Big Bang was inflationary och that the same process that made baryons predominate over anti-baryons in the early universum makes protons decay.[90][g] By this time, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objekt, begins.[3][4]
partikel fysik 1065 Assuming that protons do not decay, estimated time for rigid objekt like rocks to rearrange their atoms och molecules via quantum tunneling. On this timescale, all matter is liquid.[88]
partikel fysik 5.8×1068 Estimated time tills a stellär mass black hole med a mass of 3 solar masses decays into subatomic partikels by the Hawking process.[91]
partikel fysik 1.342×1099 Estimated time tills the central black hole of S5 0014+81, as of 2015 the most massive known med the mass of 40 miljarder solar masses, dissipates by the emission of Hawking radiation,[91] assuming zero angular momentum (non-rotating black hole). However, the black hole is on the state of accretion, so the time it takes may be longer than stated on the left.
partikel fysik 1.7×10106 Estimated time tills a supermassive black hole med a mass of 20 biljoner solar masses decays by the Hawking process.[91] This marks the end of the Black Hole Era. Beyond this time, if protons do decay, the universum enters the Dark Era, in which all physical objekt have decayed to subatomic partikels, gradually winding down to their final energi state in the heat death of the universum.[3][4]
partikel fysik 10200 Estimated high time for all nucleons in the observable universum to decay, if they don't via the above process, genom any one of many different mechanisms allowed in modern partikel fysik (higher-order baryon non-conservation processes, virtual black holes, sphalerons, etc.) on time scales of 1046 to 10200 år.[4]
partikel fysik 101500 Assuming protons do not decay, the estimated time tills all baryonic matter has either fused together to form iron-56 or decayed från a higher mass element into iron-56.[88] (see iron star)
partikel fysik <matematik>10^{10^{26}}</matematik>[h][i] Low estimate for the time tills all objekt exceeding the Planck mass collapse via quantum tunnelling into black holes, assuming no proton decay or virtual black holes.[88] On this vast timescale, even ultra-stable iron stars are destroyed by quantum tunnelling händelses. First iron stars of sufficient mass will collapse via tunnelling into neutron stars. Subsequently neutron stars och any remaining iron stars collapse via tunnelling into black holes. The subsequent evaporation of each resulting black hole into sub-atomic partikels (a process lasting roughly 10100 år) is on these timescales instantaneous.
partikel fysik <matematik>10^{10^{50}}</matematik>[b] Estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy decrease.[6]
partikel fysik <matematik>10^{10^{56}}</matematik> Estimated time for random quantum fluctuations to generate a new Big Bang.[92]
partikel fysik <matematik>10^{10^{76}}</matematik> High estimate for the time tills all matter collapses into black holes, assuming no proton decay or virtual black holes,[88] which then (on these timescales) instantaneously evaporate into sub-atomic partikels.
partikel fysik <matematik>10^{10^{120}}</matematik> High estimate for the time for the universum to reach its final energi state, even in the presence of a false vacuum.[6]

framtid of humanity

Antal år framåt i tiden händelse
teknologi och kultur 10,000 Most likely estimated livslängd of teknological civilization, according to Frank Drake's original formulation of the Drake equation.[93]
Biologi 10,000 If globalization trends lead to panmixia, human genetic variation will no longer be regionalized, as the effective population size will equal the actual population size.[94] (This does not mean homogeneity, as minority traits will still be preserved, e.g. no disappearing blonde gene, but will rather be evenly distributed worldwide.)
matematik 10,000 Humanity has a 95% probability of being extinct by this date, according to Brandon Carter's formulation of the controversial Doomsday argument, which argues that half of the humans who will ever have lived have probably already been born.[95]
teknologi och kultur 20,000 According to the glottochronologi linguistic model of Morris Swadesh, framtid languages should retain just 1 out of 100 "core vocabulary" words on their Swadesh list compared to that of their nuvarande progenitors.[96]
Geologi och planetär science 100,000+ Time required to terraform Mars med an oxygen-rich breathable atmosphere, using only plants med solar efficiency comparable to the biosphere nuvarandely found on jorden.[97]
teknologi och kultur 100,000 – 1 miljoner Estimated shortest time by which humanity could colonize the 100,000 ljus-year galax och become capable of harnessing all the energi of the galax, assuming a velocity of 10% the speed of ljus [98]
Biologi 2 miljoner Vertebrate species separated for this long will generally undergo allopatric speciation.[99] Evolutionary biologist James W. Valentine predicted that if humanity has been dispersed among genetically isolated space colonies over this time, the galax will host an evolutionary radiation of multiple human species med a "diversity of form och adaptation that would astound us".[100] (This would be a natural process of isolated populations, unrelated to potential deliberate genetic enhancement teknologies.)
matematik 7.8 miljoner Humanity has a 95% probability of being extinct by this date, according to J. Richard Gott's formulation of the controversial Doomsday argument, which argues that we have probably already lived genom half the duration of human histori.
teknologi och kultur 5 – 50 miljoner Shortest time by which the entire galax could be colonised by means medin reach of nuvarande teknologi.[101]
teknologi och kultur 100 miljoner Maximal estimated livslängd of teknological civilization, according to Frank Drake's original formulation of the Drake equation.[102]
Astronomi och astrofysik 1 miljarder Estimated time for an astroengineering project to alter the jorden's orbit, compensating for solens increasing brightness och outward migration of the habitable zone, accomplished by repeated asteroid gravity assists.[103][104]

Spacecraft och space exploration

To date five spacecraft (Voyagers 1 och 2, Pioneers 10 och 11 och New Horizons) are on trajectories which will take them out of the Solar System och into interstellär space. Barring an unlikely collision, the craft should persist indefinitely.[105]

Antal år framåt i tiden händelse
Astronomi och astrofysik 10,000 Pioneer 10 passes medin 3.8 ljus years of Barnard's Star.[105]
Astronomi och astrofysik 25,000 The Arecibo message, a collection of radio data transmitted on 16 November 1974, reaches the distance of its destination, the globular cluster Messier 13.[106] This is the only interstellär radio message sent to such a distant region of the galax. There will be a 24-ljus-year shift in the cluster's position in the galax during the time it takes the message to reach it, but as the cluster is 168 ljus-år in diameter, the message will still reach its destination.[107]
Astronomi och astrofysik 32,000 Pioneer 10 passes medin 3 ljus years of Ross 248.[108][109]
Astronomi och astrofysik 40,000 Voyager 1 passes medin 1.6 ljus years of AC+79 3888, a star in the constellation Camelopardalis.[110]
Astronomi och astrofysik 50,000 The KEO space time capsule, if it is launched, will reenter jorden's atmosphere.[111]
Astronomi och astrofysik 296,000 Voyager 2 passes medin 4.3 ljus år of Sirius, the brightest star in the night sky.[110]
Astronomi och astrofysik 800,000 – 8 miljoner Estimated livslängd of the two Pioneer plaques, before the information stored on them is rendered unrecoverable.[112]
Astronomi och astrofysik 2 miljoner Pioneer 10 passes near the bright star Aldebaran.[113]
Astronomi och astrofysik 4 miljoner Pioneer 11 passes near one of the stars in the constellation Aquila.[113]
Astronomi och astrofysik 8 miljoner The LAGEOS satellites' orbits will decay, och they will re-enter jorden's atmosphere, carrying med them a message to any far framtid descendants of humanity, och a map of the continents as they are expected to appear then.[114]
Astronomi och astrofysik 1 miljarder Estimated livslängd of the two Voyager Golden Records, before the information stored on them is rendered unrecoverable.[115]

teknological projects

Antal år framåt i tiden händelse
teknologi och kultur 10,000 Planned livslängd of the Long Now Foundation's several ongoing projects, including a 10,000-year clock known as the Clock of the Long Now, the Rosetta Project, och the Long Bet Project.[116]

Estimated livslängd of the HD-Rosetta analog disc, an ion beam-etched writing medium on nickel plate, a teknologi developed at Los Alamos National Laboratori och later commercialized. (The Rosetta Project is named after och uses this teknologi).

teknologi och kultur 100,000+ Estimated livslängd of Memori of Mankind (MOM) self storage-style repositori in Hallstatt salt mine in Austria, which stores information on inscribed tablets of stoneware.[117]
teknologi och kultur 1 miljoner Planned livslängd of the Human Document Project being developed at the University of Twente in the Netherlands.[118]
teknologi och kultur 1 miljoner Estimated livslängd of "Superman memori crystal" data storage using femtosecond laser-etched nanostructures in glass, a teknologi developed at the University of Southampton.[119][120]
teknologi och kultur 1 miljarder Estimated livslängd of "Nanoshuttle memori device" using an iron nanopartikel moved as a molecular switch genom a carbon nanotube, a teknologi developed at the University of California at Berkeley.[121]

Human constructs

Antal år framåt i tiden händelse
Geologi och planetär science 50,000 Estimated atmospheric lifetime of tetrafluoromethane, the most durable greenhouse gas.[122]
Geologi och planetär science 1 miljoner nuvarande glass objekt in the environment will be decomposed.[123]

Various public monuments composed of hard granite will have eroded one meter, in a moderate climate, assuming a rate of 1 Bubnoff unit (1 mm / 1,000 år, or ~1 inch / 10,000 år).[124]

Without maintenance, the Great Pyramid of Giza will erode into unrecognizability.[125]

On the Moon, Neil Armstrong's "one small step" footprint at Tranquility Base will erode by this time, along med those left by all twelve Apollo moonwalkers, due to the accumulated effects of space weathering.[126][127] (Normal erosion processes active on jorden are not present due to månens almost complete lack of atmosphere).

Geologi och planetär science 7.2 miljoner Without maintenance, Mount Rushmore will erode into unrecognizability.[128]
Geologi och planetär science 100 miljoner framtid archaeologists should be able to identify an "Urban Stratum" of fossilized great coastal cities, mostly genom the remains of underground infrastructure såsom building foundations och utility tunnels.[129]

astronomisk händelses

Extremely rare astronomisk händelses beginning at the 11th millennium AD (Year 10,001).

Date / år från now händelse
Astronomi och astrofysik 20 August, 10,663 AD A simultaneous total solar eclipse och transit of Merkurius.[130]
Astronomi och astrofysik 10,720 AD The planeter Merkurius och Venus will both cross the ecliptic at the same time.[130]
Astronomi och astrofysik 25 August, 11,268 AD A simultaneous total solar eclipse och transit of Merkurius.[130]
Astronomi och astrofysik 28 February, 11,575 AD A simultaneous annular solar eclipse och transit of Merkurius.[130]
Astronomi och astrofysik 17 September, 13,425 AD A near-simultaneous transit of Venus och Merkurius.[130]
Astronomi och astrofysik 13,727 AD The jorden's axial precession will make Vega the northern pole star.[131][132][133][134]
Astronomi och astrofysik 13,000 år By this point, halfway genom the precessional cycle, jorden's axial tilt will be reversed, causing summer och winter to occur on opposite sides of jorden's orbit. This means that the seasons in the northern hemisphere, which experiences more pronounced seasonal variation due to a higher percentage of land, will be even more extreme, as it will be facing towards solenat jorden's perihelion och away från solenat aphelion.[132]
Astronomi och astrofysik 5 April, 15,232 AD A simultaneous total solar eclipse och transit of Venus.[130]
Astronomi och astrofysik 20 April, 15,790 AD A simultaneous annular solar eclipse och transit of Merkurius.[130]
Astronomi och astrofysik 14,000-17,000 år The jorden's axial precession will make Canopus the South Star, but it will only be medin 10° of the south celestial pole.[135]
Astronomi och astrofysik 20,346 AD Thuban will be the northern pole star.[136]
Astronomi och astrofysik 27,800 AD Polaris will again be the northern pole star.[137]
Astronomi och astrofysik 27,000 år The eccentricity of jorden's orbit will reach a minimum, 0.00236 (it is now 0.01671).[138][139]
Astronomi och astrofysik October, 38,172 AD A transit of Uranus från Neptune, the rarest of all planetär transits.[140]
Astronomi och astrofysik 67,173 AD The planeter Merkurius och Venus will both cross the ecliptic at the same time.[130]
Astronomi och astrofysik 26 July, 69,163 AD A simultaneous transit of Venus och Merkurius.[130]
Astronomi och astrofysik 70,000 Comet Hyakutake returns to the inner solar system, after traveling in its orbit out to its aphelion 3410 A.U. från solenoch back.[141]
Astronomi och astrofysik 27 och 28 March, 224,508 AD Respectively, Venus och then Merkurius will transit the Sun.[130]
Astronomi och astrofysik 571,741 AD A simultaneous transit of Venus och the jorden as seen från Mars[130]
Astronomi och astrofysik 6 miljoner Comet C/1999 F1 (Catalina), one of the longest period comets known, returns to the inner solar system, after traveling in its orbit out to its aphelion 66,600 A.U. (1.05 ljus år) från solenoch back.[142]

Calendric predictions

Antal år framåt i tiden händelse
Astronomi och astrofysik 10,000
The Gregorian calendar will be roughly 10 days out of sync med solens position in the sky.[143]
Astronomi och astrofysik Mall:Age in år och days 10 June, 12,892 AD In the Hebrew calendar, due to a gradual drift med regard to the solar year, Passover will fall on the northern summer solstice (it is meant to fall around the spring equinox).[144]
Astronomi och astrofysik Mall:Age in år och days 20,874 AD The lunar Islamic calendar och the solar Gregorian calendar will share the same year number. After this, the shorter Islamic calendar will slowly overtake the Gregorian.[145]
Astronomi och astrofysik 25,000
The Tabular Islamic calendar will be roughly 10 days out of sync med månens phase.[146]
Astronomi och astrofysik Mall:Age in år och days 1 March, 48,901 AD The Julian calendar (365.25 days) och Gregorian calendar (365.2425 days) will be one year apart.[147][j]

Nuclear power

Antal år framåt i tiden händelse
partikel fysik 10,000 The Waste Isolation Pilot Plant, for nuclear weapons waste, is planned to be protected tills this time, med a "Permanent Marker" system designed to warn off visitors genom both multiple languages (the six UN languages och Navajo) och genom pictograms.[148] (The Human Interference Task Force has provided the theoretical basis for United States plans for framtid nuclear semiotics.)

The Yucca Mountain nuclear waste repositori is required by the U.S. Environmental Protection Agency to maintain an annual dose limit of 15 millirem tills this time.[149]

Geologi och planetär science 30,000 Estimated supply livslängd of fission-based breeder reactor reserves, using known sources, assuming nuvarande world energi consumption.[150]
Geologi och planetär science 60,000 Estimated supply livslängd of fission-based ljus water reactor reserves if it is possible to extract all the uranium från seawater, assuming nuvarande world energi consumption.[150]
partikel fysik 211,000 Half-life of technetium-99, the most important long-lived fission product in uranium-derived nuclear waste.
partikel fysik 1 miljoner The Yucca Mountain nuclear waste repositori is required by the U.S. Environmental Protection Agency to maintain an annual dose limit of 100 millirem tills this time.[149]
partikel fysik 15.7 miljoner Half-life of Iodine-129, the most durable long-lived fission product in uranium-derived nuclear waste.
Geologi och planetär science 60 miljoner Estimated supply livslängd of fusion power reserves if it is possible to extract all the lithium från seawater, assuming nuvarande world energi consumption.[151]
Geologi och planetär science 150 miljarder Estimated supply livslängd of fusion power reserves if it is possible to extract all the deuterium från seawater, assuming nuvarande world energi consumption.[151]


See also

Notes

Mall:Notes

[i]

[f] }}

References

  1. ^ . 1998. ISBN 0-7914-3553-9. 
  2. ^ Nave, C.R.. Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://hyperfysik.phy-astr.gsu.edu/hbase/thermo/seclaw.html. 
  3. ^ [a b c d] Adams, Fred; Laughlin, Greg (1999). New York. ISBN 978-0-684-85422-9. 
  4. ^ [a b c d e f g h i j k l m] Adams och Laughlin (1997), p. 15 Referensfel: Taggen <ref> är ogiltig; namnet "döende" definieras flera gånger med olika innehåll
  5. ^ Komatsu, E.; Smith, K. M.; Dunkley, J.; Bennett, C. L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; et al. (2011). The Astrophysical Journal Supplement Series (2): sid. 18. doi:10.1088/0067-0049/192/2/18. Bibcode2011ApJS..192...19W. 
  6. ^ [a b c] Journal of Cosmologi och Astropartikel fysik (subscription required) (1): sid. 022. 2007. doi:10.1088/1475-7516/2007/01/022. Bibcode2007JCAP...01..022L. http://www.iop.org/EJ/abstract/1475-7516/2007/01/022. 
  7. ^ Nature Climate Change. http://www.nature.com/nclimate/journal/vaop/nnuvarande/full/nclimate2226.html. 
  8. ^ Geophysical Research Letters (18). doi:10.1029/2008GL034954. Bibcode2008GeoRL..3518201S. http://www.ifa.hawaii.edu/~norb1/Papers/2008-milank.pdf. 
  9. ^ . Sid. 138–142. 
  10. ^ [a b] Matthews, R. A. J. (Spring 1994). Quarterly Journal of the Royal astronomisk Society (1): sid. 1. Bibcode1994QJRAS..35....1M. 
  11. ^ Science (5585): sid. 1287–8. 2002. doi:10.1126/science.1076120. PMID 12193773. 
  12. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.niagaraparks.com/media/Geologi-facts-figures.html. 
  13. ^ . Sid. 202. 
  14. ^ Finkleman, David; Allen, Steve; Seago, John; Seaman, Rob; Seidelmann, P. Kenneth. ArXiv eprint: sid. 3141. Bibcode2011arXiv1106.3141F. 
  15. ^ Tapping, Ken (2005). Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.nrc-cnrc.gc.ca/eng/education/Astronomi/tapping/2005/2005-08-31.html. 
  16. ^ [a b] Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. https://www.geolsoc.org.uk/Education-and-Careers/Resources/Papers-and-Reports/~/media/shared/documents/education%20and%20careers/Super_eruptions.ashx. 
  17. ^ . Sid. 105. 
  18. ^ . Sid. 123. ISBN 978-0-691-13654-7. 
  19. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. 2011. http://www.nps.gov/havo/faqs.htm. 
  20. ^ Monnier, J. D.; Tuthill, P.; Lopez, GB; Cruzalebes, P.; Danchi, W. C.; Haniff, C. A. (1999). The Astrophysical Journal (1): sid. 351. doi:10.1086/306761. Bibcode1999ApJ...512..351M. 
  21. ^ Bostrom, Nick (March 2002). Journal of Evolution och teknologi (1). http://www.nickbostrom.com/existential/risks.html. 
  22. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.nps.gov/badl/naturescience/geologicformations.htm. 
  23. ^ . Sid. 121. 
  24. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. Press Releases. 29 July 2009. http://www.eso.org/public/nyheter/eso0927/. 
  25. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://jordensky.org/brightest-stars/betelgeuse-will-explode-someday. 
  26. ^ Bobylev, Vadim V. (March 2010). Astronomi Letters (3): sid. 220–226. doi:10.1134/S1063773710030060. Bibcode2010AstL...36..220B. 
  27. ^ . Sid. 53. 
  28. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. Views of the National Parks. http://www.nature.nps.gov/views/layouts/Main.html#/GRCA/geo/dynamic/. 
  29. ^ Monthly Notices of the Royal astronomisk Society (3): sid. 798–810. doi:10.1111/j.1365-2966.2004.08240.x. Bibcode2004MNRAS.354..798H. 
  30. ^ [a b] Sharma, B. K. (2008). Eprint arXiv:0805.1454. http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0805.1454. 
  31. ^ Haddok, Eitan (29 September 2008). Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.scientificamerican.com/article.cfm?id=birth-of-an-ocean. 
  32. ^ Nature (6774): sid. 177–180. doi:10.1038/35004564. PMID 10724168. Bibcode2000Natur.404..177K. http://www.nature.com/nature/journal/v404/n6774/abs/404177a0.html. 
  33. ^ . Sid. 216. 
  34. ^ Garrison, Tom (2009) (5). Sid. 62. 
  35. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. 2000. http://science.nasa.gov/science-nyheter/science-at-nasa/2000/ast06oct_1/. 
  36. ^ Encyclopedia of Appalachia. 2011. http://www.encyclopediaofappalachia.com/categori.php?rec=2. 
  37. ^ Geologi (1). doi:10.1130/g23147a.1. http://pages.geo.wvu.edu/~kite/HancockKirwan2007SummitErosion.pdf. 
  38. ^ . Sid. 30. 
  39. ^ Geologi (2): sid. 167–170. doi:10.1130/G34922.1. Bibcode2014Geo....42..167D. http://noblegas.berkeley.edu/~balcs/pubs/Dethier_2014_Geologi.pdf. 
  40. ^ Pimentel, David, red. ”Can the jorden Deliver the Biomass-for-Fuel we Demand?”. 
  41. ^ Mall:Cite nyheter
  42. ^ Nelson, Stephen A.. Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.tulane.edu/~sanelson/geol204/impacts.htm. 
  43. ^ . Sid. 328–329. 
  44. ^ Nature fysik (10): sid. 689–691. 2007. doi:10.1038/nphys728. Bibcode2007NatPh...3..689H. 
  45. ^ Leong, Stacy (2002). Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. The fysik Factbook. http://hypertextbook.com/facts/2002/StacyLeong.shtml. 
  46. ^ Scotese, Christopher R.. Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. Paleomap Project. http://www.scotese.com/newpage11.htm. 
  47. ^ [a b] Mall:Cite nyheter
  48. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://nyheter.nationalgeographic.com/nyheter/2009/04/090403-gamma-ray-extinction.html. 
  49. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://webcache.googleusercontent.com/search?q=cache:http://sunjordenday.nasa.gov/2006/faq.php. 
  50. ^ [a b] . http://arxiv.org/pdf/1210.5721v1.pdf. 
  51. ^ [a b] A bot will complete this citation soon. Click here to jump the queueHeath, Martin J.; Doyle, Laurance R. (2009). 'arXiv:0912.2482'. 
  52. ^ [a b c] Franck, S.; Bounama, C.; Von Bloh, W. (November 2005). Biogeosciences Discussions (6): sid. 1665–1679. doi:10.5194/bgd-2-1665-2005. Bibcode2005BGD.....2.1665F. http://biogeosciences-discuss.net/2/1665/2005/bgd-2-1665-2005.pdf. 
  53. ^ Schröder, K.-P.; Connon Smith, Robert (1 May 2008). Monthly Notices of the Royal astronomisk Society (1): sid. 155–163. doi:10.1111/j.1365-2966.2008.13022.x. Bibcode2008MNRAS.386..155S. 
  54. ^ Brownlee, Donald E. (2010). ”planetär habitability on astronomisk time scales”. i Schrijver, Carolus J.; Siscoe, George L.. ISBN 978-0-521-11294-9. 
  55. ^ Proceedings of the National Academy of Sciences of the United States of America (24). 2009. doi:10.1073/pnas.0809436106. PMID 19487662. Bibcode2009PNAS..106.9576L. 
  56. ^ [a b] . 2004. Sid. 509. ISBN 978-1-85233-568-7. http://books.google.com/?id=0QY0U6qJKFUC&pg=PA509&lpg=PA509&dq=mars+framtid+%22miljarder+år%22+sun. 
  57. ^ Waszek, Lauren; Irving, Jessica; Deuss, Arwen (20 February 2011). Nature Geoscience (4): sid. 264–267. doi:10.1038/ngeo1083. Bibcode2011NatGe...4..264W. 
  58. ^ McDonough, W. F. (2004). Treatise on Geochemistry: sid. 547–568. doi:10.1016/B0-08-043751-6/02015-6. ISBN 978-0-08-043751-4. Bibcode2003TrGeo...2..547M. 
  59. ^ Luhmann, J. G.; Johnson, R. E.; Zhang, M. H. G. (1992). Geophysical Research Letters (21): sid. 2151–2154. doi:10.1029/92GL02485. Bibcode1992GeoRL..19.2151L. 
  60. ^ . doi:10.1038/nyheter050228-12. 
  61. ^ Adams, Fred C. (2008). ”Long-term astrophysicial processes”. i Bostrom, Nick; Cirkovic, Milan M.. Sid. 33–47. 
  62. ^ Neron de Surgey, O.; Laskar, J. (1996). Astronomie et Systemes Dynamiques, Bureau des Longitudes: sid. 975. Bibcode1997A&A...318..975N. 
  63. ^ Mall:Cite nyheter
  64. ^ Mall:Cite nyheter
  65. ^ Chyba, C. F.; Jankowski, D. G.; Nicholson, P. D. (1989). Astronomi och astrofysik: sid. 23. Bibcode1989A&A...219L..23C. 
  66. ^ Monthly Notices of the Royal astronomisk Society (1): sid. 461. 2007. doi:10.1111/j.1365-2966.2008.13048.x. Bibcode2008MNRAS.tmp..333C. 
  67. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. NASA. http://www.nasa.gov/mission_pages/hubble/science/milky-way-collide.html. 
  68. ^ Mall:Cite nyheter
  69. ^ Braine, J.; Lisenfeld, U.; Duc, P. A.; Brinks, E.; Charmandaris, V.; Leon, S. (2004). Astronomi och astrofysik (2): sid. 419–428. doi:10.1051/0004-6361:20035732. Bibcode2004A&A...418..419B. http://www.aanda.org/index.php?option=article&access=doi&doi=10.1051/0004-6361:20035732. 
  70. ^ [a b c d] Schroder, K. P.; Connon Smith, Robert (2008). Monthly Notices of the Royal astronomisk Society (1): sid. 155–163. doi:10.1111/j.1365-2966.2008.13022.x. Bibcode2008MNRAS.386..155S. 
  71. ^ Powell, David (January 22, 2007), Space.com, http://www.space.com/scienceAstronomi/070122_temporary_moon.html. 
  72. ^ Icarus (1): sid. 130–137. 2001. doi:10.1006/icar.2001.6591. Bibcode2001Icar..151..130R. 
  73. ^ (PDF)Geophysical Research Letters (22): sid. 2905–8. 1997. doi:10.1029/97GL52843. PMID 11542268. Bibcode1997GeoRL..24.2905L. http://www.lpl.arizona.edu/~rlorenz/redgiant.pdf. 
  74. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.astro.washington.edu/balick/WFPC2/. 
  75. ^ Kalirai, Jasonjot S.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B. (March 2008). The Astrophysical Journal (1): sid. 594–609. doi:10.1086/527028. Bibcode2008ApJ...676..594K. 
  76. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. CERN Courier. 1 May 2003. http://cerncourier.com/cws/article/cern/28845. 
  77. ^ Vikhlinin, A.; Kravtsov, A.V.; Burenin, R.A.; Ebeling, H.; Forman, W. R.; Hornstrup, A.; Jones, C.; Murray, S. S.; et al. (2009). The Astrophysical Journal (2): sid. 1060. doi:10.1088/0004-637X/692/2/1060. Bibcode2009ApJ...692.1060V. 
  78. ^ . 1999. Sid. 184. ISBN 978-0-521-57295-8. 
  79. ^ Dickinson, Terence (1993). Camden East, Ontario. Sid. 79–81. ISBN 978-0-921820-71-0. 
  80. ^ Canup, Robin M.; Righter, Kevin (2000). The University of Arizona space science series. Sid. 176–177. ISBN 978-0-8165-2073-2. http://books.google.com/books?id=8i44zjcKm4EC&pg=PA176. 
  81. ^ [a b] Harvard University. 2011. 
  82. ^ Chown, Marcus (1996). Sid. 210. 
  83. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. University of Arizona. http://messier.seds.org/more/local.html. 
  84. ^ Adams, F. C.; Graves, G. J. M.; Laughlin, G. (December 2004). Red dvärgs och the End of the Main Sequence. i García-Segura, G.; Tenorio-Tagle, G.; Franco, J. m.fl.. . Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias): sid. 46–49. Bibcode2004RMxAC..22...46A.  See Fig. 3.
  85. ^ (2). 1993. Sid. 92. ISBN 978-0-521-36710-3. 
  86. ^ Barrow, John D.; Tipler, Frank J. (19 May 1988). foreword by John A. Wheeler. Oxford. LC 87-28148. ISBN 978-0-19-282147-8. http://books.google.com/books?id=uSykSbXklWEC&printsec=frontcover. 
  87. ^ Adams, Fred; Laughlin, Greg (1999). New York. Sid. 85–87. ISBN 978-0-684-85422-9. 
  88. ^ [a b c d e f] Reviews of Modern fysik (subscription required) (3): sid. 447. 1979. doi:10.1103/RevModPhys.51.447. Bibcode1979RvMP...51..447D. http://rmp.aps.org/abstract/RMP/v51/i3/p447_1. 
  89. ^ Physical Review Letters (14): sid. 141801. 2009. doi:10.1103/PhysRevLett.102.141801. Bibcode2009PhRvL.102n1801N. 
  90. ^ [a b] Tyson, Neil de Grasse; Tsun-Chu Liu, Charles; Irion, Robert (2000). ISBN 978-0-309-06488-0. http://www.nap.edu/jhp/oneuniversum/frontiers_solution_17.html. 
  91. ^ [a b c] Page, Don N. (1976). Physical Review D (2): sid. 198–206. doi:10.1103/PhysRevD.13.198. Bibcode1976PhRvD..13..198P.  See in particular equation (27).
  92. ^ . 27 Oct 2004. Bibcode2004hep.th...10270C. 
  93. ^ . Sid. 258. 
  94. ^ . Sid. 395. 
  95. ^ Carter, Brandon; McCrea, W. H. (1983). Philosophical Transactions of the Royal Society of London (1512): sid. 347–363. doi:10.1098/rsta.1983.0096. Bibcode1983RSPTA.310..347C. 
  96. ^ . Sid. 341–342. 
  97. ^ Nature (6335): sid. 489–496. doi:10.1038/352489a0. Bibcode1991Natur.352..489M. 
  98. ^ Kaku, Michio (2010). Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://mkaku.org/home/?page_id=250. 
  99. ^ Philosophical Transactions of the Royal Society B (1407): sid. 1707–1712. doi:10.1098/rspb.1998.0492. PMID 9787467. PMC: 1689361. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1689361/bin/9787467s1.pdf. 
  100. ^ Finney, Ben R.; Jones, Eric M., reds. ”The Origins of Evolutionary Novelty och Galactic Colonization”. Sid. 274. 
  101. ^ Crawford, I. A. (July 2000). Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.scientificamerican.com/article.cfm?id=where-are-they. 
  102. ^ . Sid. 23. 
  103. ^ Koricansky, D. G. (2001). astrofysik och Space Science: sid. 349. doi:10.1023/A:1002790227314. Astrophys.Space Sci.275:349-366,2001. 
  104. ^ Revista Mexicana de Astronomía y Astrofísica: sid. 117–120. http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_koricansky.pdf. 
  105. ^ [a b] Mall:Cite nyheter
  106. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. Arkiverad från originalet den 2 August 2008. http://web.archive.org/web/20080802005337/http://www.nyheter.cornell.edu/releases/Nov99/Arecibo.message.ws.html. 
  107. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.science20.com/comments/28100/In_regard_to_the_email_från. 
  108. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.nasa.gov/home/hqnyheter/1997/97-031.txt. 
  109. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.nasa.gov/directorates/somd/reports/2003/us.html. 
  110. ^ [a b] Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://voyager.jpl.nasa.gov/mission/interstellär.html. 
  111. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.keo.org/uk/pages/faq.html#q1. 
  112. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. https://web.archive.org/web/20000408152959/http://spaceprojects.arc.nasa.gov/Space_Projects/pioneer/PNStat.html. 
  113. ^ [a b] Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.nasa.gov/centers/ames/missions/archive/pioneer.html. 
  114. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://space.jpl.nasa.gov/msl/QuickLooks/lageosQL.html. 
  115. ^ Jad Abumrad och Robert Krulwich. [Radio]. http://www.npr.org/2010/02/12/123534818/carl-sagan-and-ann-druyans-ultimate-mix-tape 
  116. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. 2011. http://longnow.org/about/. 
  117. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. Arkiverad från originalet den January 23, 2015. http://web.archive.org/web/20150123051515/http://www.memori-of-mankind.com/en/home.html. 
  118. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://hudoc2014.manucodiata.org/. 
  119. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.southampton.ac.uk/mediacentre/nyheter/2013/jul/13_131.shtml. 
  120. ^ CLEO: Science och Innovations: sid. CTh5D-9. http://www.orc.soton.ac.uk/fileadmin/downloads/5D_Data_Storage_by_Ultrafast_Laser_Nanostructuring_in_Glass.pdf. 
  121. ^ Nano Letters (5): sid. 1835–1838. doi:10.1021/nl803800c. Bibcode2009NanoL...9.1835B. http://www.fysik.berkeley.edu/research/zettl/pdf/363.NanoLet.9-Begtrup.pdf. 
  122. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. Toxicologi Data Network (TOXNET). http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+1327. 
  123. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://des.nh.gov/organization/divisions/water/wmb/coastal/trash/documents/marine_debris.pdf. 
  124. ^ . 
  125. ^ , New York, s. 171–172, ISBN 0-312-34729-4, OCLC 122261590 
  126. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. Student Features. http://www.nasa.gov/audience/forstudents/k-4/home/F_Apollo_11.html. 
  127. ^ . Sid. 81–83. 
  128. ^ , New York, s. 182, ISBN 0-312-34729-4, OCLC 122261590 
  129. ^  , Review in Stanford Archaeolog
  130. ^ [a b c d e f g h i j k] Journal of the British astronomisk Association (3). 2004. http://chemistry.unina.it/~alvitagl/solex/Simtrans.pdf. 
  131. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://webcache.googleusercontent.com/search?q=cache:http://starchild.gsfc.nasa.gov/docs/StarChild/questions/question64.html. 
  132. ^ [a b] . 2002. Sid. 55–56. 
  133. ^ . Sid. 116. 
  134. ^ , http://www.stellärium.org 
  135. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://myweb.tiscali.co.uk/moonkmft/Articles/Precession.html. 
  136. ^ . Sid. 102. 
  137. ^ . Sid. 140. 
  138. ^ Laskar, J. (1993). Astronomi och astrofysik: sid. 522–533. Bibcode1993A&A...270..522L. 
  139. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.imcce.fr/Equipes/ASD/insola/jorden/jorden.html. 
  140. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. 2011. http://chemistry.unina.it/~alvitagl/solex/. 
  141. ^ Journal of the British astronomisk Association: sid. 157. 1998. Bibcode1998JBAA..108..157J. 
  142. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=C/1999+F1. 
  143. ^ Borkowski, K.M. (1991). J. Royal astronomisk Soc. of Canada (3): sid. 121–130. Bibcode1991JRASC..85..121B. 
  144. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://individual.utoronto.ca/kalendis/hebrew/rect.htm#over. 
  145. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}”. 2010. http://aa.quae.nl/en/antwoorden/moderne_kalenders.html. 
  146. ^ . Sid. 93. 
  147. ^ Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://aa.usno.navy.mil/data/docs/JulianDate.php/. 
  148. ^ WIPP Permanent Markers Implementation Plan, rev1 (2004)
  149. ^ [a b] Fel: |title= (titel) måste specificeras vid användandet av {{cite web}}. http://www.epa.gov/radiation/yucca/about.html. 
  150. ^ [a b] Mall:Cite nyheter
  151. ^ [a b] Fusion Science och teknologi. 2004 (2T): sid. 3–14. http://www.agci.org/dB/PDFs/03S2_MMauel_SafeFusion%3F.pdf. 

Mall:Millennia
Referensfel: <ref>-taggar finns för en grupp vid namn "not", men ingen motsvarande <references group="not"/>-tagg hittades