Fordonsdynamik

Från Wikipedia
Version från den 13 mars 2013 kl. 17.47 av Addbot (Diskussion | Bidrag) (Bot överför 7 interwikilänk(ar), som nu återfinns på sidan d:q934680Wikidata)

Fordonsdynamik avser de krafter, rörelser och förändringar av rörelser som påverkar fordon. Denna artikel gäller främst personbilar, lastbilar och bussar. I artikeln aerodynamik behandlas krafter som verkar på flygfarkoster, raketer och projektiler m m.

Fordonsdynamik bygger i första hand på klassisk mekanik, men kan också innebära kemi, fasta tillståndets fysik, elektroteknik, kommunikation, psykologi, reglerteknik, vägteknik etc.

Kontrollsystem

Fjädring hos Saab Quantum IV

Exempel på fordonsdynamiska kontrollsystem är:

Aerodynamiska aspekter

Aerodynamisk bilfront, anno 1953
Porsche 956 utformad för stor nedkraft, anno 1983

Vissa attribut eller aspekter av fordonsdynamik är rent aerodynamiska. Dessa inkluderar:

Geometriska aspekter

Ackermann styrgeometri

Till de geometriska egenskaper som har stor fordonsdynamisk påverkan hör:

Vägspecifika aspekter

Hög fart i tvär kurva ger stora sidkrafter
Guppiga vägar ger obekväm färdvibration

Fordonets dynamik påverkas i hög grad av vägfaktorer såsom:

Risken för vattenplaning påverkas av däckets mönster, mönsterdjup samt en rad vägfaktorer, såsom snedlutning och textur (vägar).

Tunga fordons rullmotstånd påverkas dessutom av vägytans deflektion (svikt) och därmed av brister i vägens bärighet.

Masspecifika aspekter

Högt lass ger hög tyngdpunkt

Vissa egenskaper handlar om massa och dess fördelning, så som framgår av ordspråket "Liten tuva stjälper ofta stort lass". Exempel på sådana egenskaper är:

Rörelseaspekter

En Mercedes-Benz CLS AMG 55 som överstyr på våt vägyta.

Vissa rörelseaspekter är rent dynamiska. Dessa inkluderar:

Överstyrning kan förebyggas med hjälp av "antisladdsystem" (Elektronisk stabilitetskontroll).

Däckegenskaper

Bildäck

Vissa aspekter av fordonsdynamik direkt kan hänföras till däcken. Dessa inkluderar bl a:

Friktion och rullmotstånd beror även av vägytans egenskaper. Rullmotståndet är direkt proportionellt mot däckets deformation resp underlagets deformation, samt omvänt proportionellt mot däckets radie. Även faktorer som påverkar däckets deformation, påverkar via deformationen även rullmotståndet. Detta gäller exempelvis fordonets massa, hastighet samt kurvtagning. Smala däck har lägre rullmotstånd än breda däck.

Körteknik

François Duval sladdar med sin Citroën Xsara WRC i tyska rallyt 2007

Körteknik som påverkar fordonets stabilitet inkluderar:

I svensk körkortsutbildning ingår halkkörning som ett utbildningsmoment.

Analys och simulering

BMW E31: Analys av snabbt körfältsbyte med och utan AHK bakaxel

Fordonets dynamiska beteende kan analyseras på flera olika sätt. Modellen kan vara en enkel kvartsfordonsmodell, med en enkel fjädrad massa (karosserihörn av 4-hjulig bil), via ett fjäder- och dämparsystem samt en ofjädrad massa (hjulet) med viss styvhet, som kan lösas för hand av en angelägen matematiker eller simuleras på en dator. Vanliga programvaror är MatLab, Modelica, MSC ADAMS och en rad andra. Många av dessa använder mellan tjugo och flera hundra frihetsgrader (Degree Of Freedom, DOF), med ständigt ökande övre gräns/antal. Däcket är oftast en av de största svårigheterna att simulera på ett relevant sätt. Däcket är normalt modellerat utifrån Pacejka´s magiska formel[1] eller ett liknande koncept.

Racingspel är också en form av fordonsdynamisk simulering, även om många förenklingar är nödvändiga för att få realtidsprestanda med rimlig grafik. Det är viktigt att modellerna stämmer överens med resultat från verkliga test. Därför sker många provningar som har korrelerats mot resultat från instrumenterade provfordon.

Exempel på tester är:

  • Metkrok
  • Frekvensomfång
  • Körfältsbyte
  • Älgtest
  • Sinusformad styrning

Se även

Externa länkar

Referenser

  1. ^ Pacejka, Hans B. Tire and Vehicle Dynamics (2nd). Society of Automotive Engineers. sid. 3. ISBN 0 7680 1702 5 
  • Roadex III: Health Issues Raised by Poorly Maintained Road Networks, Chapter 3.2 An overview of Heavy Trucks Dynamics
  • "Fundamentals of Vehicle Dynamics", Thomas D Gillespie, Society of Automotive Engineers, ISBN 1-56091-199-9
  • "Handbook of Vehicle-Road Interaction", David Cebon, Swets & Zeitlingers Publishers, ISBN 90-265-1554-5
  • "Heavy Vehicle Ride and Endurance - Modelling and Model Validation", Anders Forsén, Kungliga Tekniska Högskolan, Doktorsavhandling TRITA-FKT 1999:33
  • Internationell standard ISO 13674-1 (2010) "Road vehicles -- Test method for the quantification of on-centre handling -- Part 1: Weave test". International Organization for Standardization, Geneva.
  • "Heavy Vehicle Ride and Endurance - Modelling and Model Validation", Anders Forsén, Kungliga Tekniska Högskolan, Doktorsavhandling TRITA-FKT 1999:33
  • Internationell standard ISO 11012 (2009) "Heavy commercial vehicles and buses -- Open-loop test methods for the quantification of on-centre handling -- Weave test and transition test". International Organization for Standardization, Geneva.
  • Internationell standard ISO 11026 (2010) "Heavy commercial vehicles and buses -- Test method for roll stability -- Closing-curve test". International Organization for Standardization, Geneva.
  • Internationell standard ISO 13674-1 (2010) "Road vehicles -- Test method for the quantification of on-centre handling -- Part 1: Weave test". International Organization for Standardization, Geneva.
  • Internationell standard ISO 3888-1 (1999) "Passenger cars -- Test track for a severe lane-change manoeuvre -- Part 1: Double lane-change". International Organization for Standardization, Geneva.
  • Internationell standard ISO 9815 (2010) "Road vehicles -- Passenger-car and trailer combinations -- Lateral stability test". International Organization for Standardization, Geneva.