Riemanns zetafunktion

Från Wikipedia
(Omdirigerad från Riemanns zeta-funktion)
Riemanns zeta-funktion ζ(s) i det komplexa planet. Färgen på en punkt s visar värdet av ζ (s): starka färger är för värden nära noll och nyansen visar värdet på argumentet. Den vita fläcken vid s = 1 är en pol, de svarta prickarna på den negativa reella axeln och på den kritiska linjen Re (er) = 1/2 är nollställen.

Riemanns zetafunktion eller Euler–Riemanns zetafunktion är en av de viktigaste funktionerna inom den komplexa analysen. Den används bland annat inom fysik, sannolikhetsteori och statistik. Det finns även en koppling mellan funktionen och primtalen, se Riemannhypotesen.[1] Hypotesen är ett av såväl Hilbertproblemen som Millennieproblemen och är fortfarande obevisad.

Funktionen är den analytiska fortsättningen av serien

Historia[redigera | redigera wikitext]

Under 1700-talet undersökte Euler serien med reella värden på s:

Serien konvergerar när s > 1. Han upptäckte att serien ovan även kan uttryckas som en oändlig produkt över alla primtal.

Bernhard Riemann undersökte den i det komplexa talplanet och bevisade att funktionen konvergerar för hela komplexa talplanet då Re(s) > 1.[1] Sedan dess används beteckningen ζ(s) för Riemanns zetafunktion.

Definition[redigera | redigera wikitext]

Man kan definiera Riemanns zeta-funktion ζ(s) på två sätt, med hjälp av en Dirichletserie samt som en Eulerprodukt.

Dirichletserie[redigera | redigera wikitext]

Riemanns zeta-funktion definieras för {s ∈ C: Re(s)>1}, d.v.s. s= σ + it, σ>1, enligt:

Enligt Cauchys intergraltest är denna serie konvergent inom det intervallet. Enligt Weierstrass kriterium är funktionen ζ(s) holomorfisk för Re(s)= σ >1 och därmed absolutkonvergent.

Eulerprodukt[redigera | redigera wikitext]

Euler visade år 1737[2] att serien

kan skrivas om som en produkt över alla primtal:

Man kan börja skriva om högerledet som en geometrisk serie:

där pi är det i:e primtalet.

I nästa steg utvecklar vi produkten av summan och vi får:

Nu kan vi med hjälp av aritmetikens fundamentalsats skriva om summorna: Eftersom varje primtalsuppdelning är unik, och alla tal kan skrivas som en produkt av primtal (och en oändlig mängd ettor), så kommer varje heltal att dyka upp en och endast en gång, och därmed kan vi skriva

Funktionalekvation[redigera | redigera wikitext]

För alla gäller funktionalekvationen

Den kan skrivas i den symmetriska formen

Riemann definierade en annan funktion, Riemanns xi-funktion, med hjälp av vilken funktionalekvationen kan skrivas ännu kortare. Dess definition är

och dess funktionalekvation är

Serierepresentationer[redigera | redigera wikitext]

Laurentserie[redigera | redigera wikitext]

Riemanns zeta-funktion är meromorfisk med en simpel pol för s = 1. Därför kan den utvecklas i en Laurentserie runt s = 1:

Konstanterna γn kallas Stieltjeskonstanterna och kan definieras som

Konstanttermen γ0 är Eulers konstant.

Globalt konvergerande serier[redigera | redigera wikitext]

En globalt konvergerande serie för zetafunktionen valid för alla komplexa tal s utom s = 1 + 2πin/log(2) för något heltal n förmodades av Konrad Knopp och bevisades av Helmut Hasse 1930:

Hasse bevisade även serien

Övriga serier[redigera | redigera wikitext]

En serie med Pochhammersymbolen är


Integralrepresentationer[redigera | redigera wikitext]

För alla gäller

och

För gäller

En annan integral för är

.

Några specialfall för och är

.

En integral för zetafunktionens derivata är

som gäller för alla komplexa tal utom 1.

För alla kan zetafunktionen skrivas som multipelintegralen

Egenskaper[redigera | redigera wikitext]

Även om är

det vill säga zetafunktionen har en simpel pol vid s = 1 med residy 1.[1]

Speciella värden[redigera | redigera wikitext]

Jämna positiva heltal[redigera | redigera wikitext]

och i allmänhet

för nN.

Udda positiva heltal[redigera | redigera wikitext]

Man känner inte till någon sluten form för zetafunktionens udda värden, men flera snabbt konvergerande serier har bevisats:

Negativa heltal[redigera | redigera wikitext]

Derivata[redigera | redigera wikitext]

Zetafunktionens derivata för negativa jämna heltal ges av

De första värdena blir

Andra värden är

OEISA075700

och

OEISA084448

där A är Glaisher–Kinkelins konstant.

Relation till andra funktioner[redigera | redigera wikitext]

Zetafunktionen kan formellt ges som Mellintransformationen

med hjälp av Jacobis thetafunktion

Integralen konvergerar dock inte för något värde på s, men kan modifieras till följande uttryck för zetafunktionen:

Användning[redigera | redigera wikitext]

Kopplingen mellan zetafunktionen och primtalen gör att zetafunktionen fortfarande är av intresse för matematiker. Riemannhypotesen som handlar om nollställen av zeta i sin tur som skulle kunna bestämma utbredning av alla primtal, en bättre approximation av de olika aritmetiska funktioner som t.ex. primtalfunktionen π(x).

Man kan hitta ett användningsområde av denna funktion även i statistik som ”Zipfs lag” och i matematiska teorier för stämning av musik. Inom fysik utnyttjas den i kaos i klassiska och kvantmekaniska system.

Formler som innehåller zetafunktionen[redigera | redigera wikitext]

där ψ0 är digammafunktionen.

Serier relaterade till Eulers konstant är

En serie för Catalans konstant är


Några serier av Adamchik och Srivastava:

och

där är Bernoullitalen och är Stirlingtalen av andra ordningen.

Övrigt[redigera | redigera wikitext]

Man kan uttrycka det inverterade värdet av zeta-funktionen med hjälp av Möbiusfunktionen μ(n) på följande sätt:

för varje komplext tal s med realdel > 1.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

Noter[redigera | redigera wikitext]

  1. ^ [a b c] Numberphile (11 mars 2014). ”Riemann Hypothesis - Numberphile”. https://www.youtube.com/watch?v=d6c6uIyieoo. Läst 20 januari 2017. 
  2. ^ Beviset presenterades för akademin i Sankt Petersburg den 25 april 1737 enligt The Euler Archive Arkiverad 25 februari 2014 hämtat från the Wayback Machine.. Det publicerades 1844 som teorem 8 i artikeln Variae observationes circa series infinitas sid. 174-176. i Commentarii academiae scientiarum Petropolitanae 9 Arkiverad 7 september 2019 hämtat från the Wayback Machine. för år 1737 vars försättsblad finns att beskåda här Arkiverad 3 november 2014 hämtat från the Wayback Machine.. Engelsk översättning finns här (teorem 8 på sid. 9-10).

Allmänna källor[redigera | redigera wikitext]

Externa länkar[redigera | redigera wikitext]