Matrisrang

Från Wikipedia
Hoppa till navigering Hoppa till sök

Inom linjär algebra definieras rang för en matris A, med koefficienter tillhörande någon kropp K, som det maximala antalet linjärt oberoende kolonner i A, vilket är ekvivalent med dimensionen av kolonnrummet till A. På samma sätt talar man om radrang som antalet linjärt oberoende rader i A, eller dimensionen av radrummet. Eftersom radrang och kolonnrang alltid sammanfaller behöver man emellertid oftast inte särskilja mellan dessa.

Alternativa definitioner[redigera | redigera wikitext]

Låt A vara en m x n matris, med koefficienter i K. Betraktas A som en linjär avbildning kan rang A definieras som dimensionen hos bildrummet för A. Detta visar att rang är oberoende av bas.

Egenskaper[redigera | redigera wikitext]

Från definitionerna ovan fås direkt att om A är en m x n matris, så är rang. Råder likhet sägs A ha maximal rang. Är m = n, är detta ekvivalent med att A är inverterbar

  • Vid sammansättning av avbildningar behöver inte rangen bevaras. Det gäller alltid att rangen av AB är mindre eller lika med det minsta av de två talen rang A och rang B

Beräkning av rang[redigera | redigera wikitext]

Rangen hos en matris kan exempelvis beräknas med hjälp av LU-faktorisering(Gausselimination). Detta leder dock till problem vid flyttalsberäkningar eftersom då koefficienterna inte är exakt kända. Om A då inte har maximal rang, blir resultatet lätt felaktigt. För numeriska beräkningar av rang används därför antingen singulärvärdesfaktorisering, som dock är beräkningskrävande, samt QR-faktorisering, som också är mer numeriskt stabilt för rangberäkning än Gausselimination.