Transponat

Från Wikipedia
Hoppa till: navigering, sök

Inom linjär algebra är transponatet av en matris A en matris betecknad AT. AT kan beräknas på flera ekvivalenta sätt:

  • Låt A:s rader bilda AT:s kolonner.
  • Låt A:s kolonner bilda AT:s rader.
  • Bilda AT genom att reflektera A:s element i huvuddiagonalen.

Om aij är elementet på rad i, kolonn j i A ges elementen i AT av:

.

Exempel[redigera | redigera wikitext]

Egenskaper[redigera | redigera wikitext]

Om A och B är matriser och c en skalär, så har man följande egenskaper:

  • Vid transponering av en produkt av matriser vänder man på ordningen:
  • Om är inverterbar är transponatet av inversen lika med inversen av transponatet:

Speciella matriser[redigera | redigera wikitext]

Om D är en diagonalmatris är DT = D.

En symmetrisk matris är en matris där

En skevsymmetrisk matris är en matris där

.

En ortogonal matris är en matris vars transponat är dess invers:

Se även[redigera | redigera wikitext]