Dimensionssatsen

Från Wikipedia
Hoppa till navigering Hoppa till sök

Dimensionssatsen är en sats inom linjär algebra om det samband som finns mellan nollrummet och värderummet till en linjär avbildning och dess dimensioner:

Om och är två vektorrum och är en linjär avbildning så gäller:

Bevis[redigera | redigera wikitext]

Antag att , låt vara en bas för och fyll ut med till en bas för .

  • Om är ty det enda som nås av är nollvektorn och och satsen stämmer.
  • Om gäller som vanligt att men då innebär det att där måste vara linjärt oberoende ty ty omm och är alla då de är basvektorer i och således linjärt oberoende. Alltså utgör en bas för och och satsen stämmer.
  • Om gäller som vanligt att där måste vara linjärt oberoende ty ty och är alla då de är basvektorer i och således linjärt oberoende. Alltså utgör en bas för och och satsen stämmer.

Således har vi nu visat att satsen stämmer i samtliga tre fall.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

  • Janfalk, Ulf, Linjär Algebra, 2013, Matematiska institutionen, Linköpings Universitet