Taxital

Från Wikipedia
Hoppa till: navigering, sök

Inom talteorin är det n-te taxitalet det minsta positiva heltal som kan uttryckas som summan av två positiva kubern olika sätt. Det n-te taxitalet betecknas ofta Ta(n) eller Taxicab(n).

Existerar för alla positiva heltal[redigera | redigera wikitext]

G. H. Hardy och E. M. Wright bevisade 1954 att Ta(n) existerar för alla positiva heltal n, men deras bevis var inte konstruktivt, det vill säga det hjälper oss inte att finna nya taxital.

Kända taxital[redigera | redigera wikitext]

De enda taxital som man hittills känner till är de följande fem (talföljd A011541 i OEIS):

\begin{matrix}\operatorname{Ta}(1)&=&2&=&1^3 + 1^3\end{matrix}


\begin{matrix}\operatorname{Ta}(2)&=&1729&=&1^3 + 12^3 \\&&&=&9^3 + 10^3\end{matrix}


\begin{matrix}\operatorname{Ta}(3)&=&87539319&=&167^3 + 436^3 \\&&&=&228^3 + 423^3 \\&&&=&255^3 + 414^3\end{matrix}


\begin{matrix}\operatorname{Ta}(4)&=&6963472309248&=&2421^3 + 19083^3 \\&&&=&5436^3 + 18948^3 \\&&&=&10200^3 + 18072^3 \\&&&=&13322^3 + 16630^3\end{matrix}


\begin{matrix}\operatorname{Ta}(5)&=&48988659276962496&=&38787^3 + 365757^3 \\&&&=&107839^3 + 362753^3 \\&&&=&205292^3 + 342952^3 \\&&&=&221424^3 + 336588^3 \\&&&=&231518^3 + 331954^3\end{matrix}

Ännu inte kända taxital[redigera | redigera wikitext]

Man vet inte exakt hur stort Ta(6) är, men det är inte större än 24 153 319 581 254 312 065 344, eftersom

\begin{matrix}24153319581254312065344
&=&289062063^3 + 5821623^3 \\
&=&288948033^3 + 30641733^3 \\
&=&286574873^3 + 85192813^3 \\
&=&270932083^3 + 162180683^3 \\
&=&265904523^3 + 174924963^3 \\
&=&262243663^3 + 182899223^3.
\end{matrix}

Det är också känt att Ta(6) > 68 000 000 000 000 000 000.

Ta(7) till Ta(12) är inte kända, men de kan som högst vara nedanstående värden.[1]

\begin{matrix}\operatorname{Ta}(7)& \le &24885189317885898975235988544&=&2648660966^3 + 1847282122^3 \\&&&=&2685635652^3 + 1766742096^3 \\&&&=&2736414008^3 + 1638024868^3 \\&&&=&2894406187^3 + 860447381^3 \\&&&=&2915734948^3 + 459531128^3 \\&&&=&2918375103^3 + 309481473^3\\&&&=&2919526806^3 + 58798362^3\end{matrix}


\begin{matrix}\operatorname{Ta}(8)& \le &50974398750539071400590819921724352&=&299512063576^3 + 288873662876^3 \\&&&=&336379942682^3 + 234604829494^3 \\&&&=&341075727804^3 + 224376246192^3 \\&&&=&347524579016^3 + 208029158236^3 \\&&&=&367589585749^3 + 109276817387^3 \\&&&=&370298338396^3 + 58360453256^3\\&&&=&370633638081^3 + 39304147071^3\\&&&=&370779904362^3 + 7467391974^3\end{matrix}


\begin{matrix}\operatorname{Ta}(9)& \le &136897813798023990395783317207361432493888&=&41632176837064^3 + 40153439139764^3 \\&&&=&46756812032798^3 + 32610071299666^3 \\&&&=&47409526164756^3 + 31188298220688^3 \\&&&=&48305916483224^3 + 28916052994804^3 \\&&&=&51094952419111^3 + 15189477616793^3 \\&&&=&51471469037044^3 + 8112103002584^3\\&&&=&51518075693259^3 + 5463276442869^3\\&&&=&51530042142656^3 + 4076877805588^3\\&&&=&51538406706318^3 + 1037967484386^3\end{matrix}


\begin{matrix}\operatorname{Ta}(10)& \le &7335345315241855602572782233444632535674275447104&=&15695330667573128^3 + 15137846555691028^3 \\&&&=&17627318136364846^3 + 12293996879974082^3 \\&&&=&17873391364113012^3 + 11757988429199376^3 \\&&&=&18211330514175448^3 + 10901351979041108^3 \\&&&=&19262797062004847^3 + 5726433061530961^3 \\&&&=&19404743826965588^3 + 3058262831974168^3\\&&&=&19422314536358643^3 + 2059655218961613^3\\&&&=&19426825887781312^3 + 1536982932706676^3\\&&&=&19429379778270560^3 + 904069333568884^3\\&&&=&19429979328281886^3 + 391313741613522^3\end{matrix}


\begin{matrix}\operatorname{Ta}(11)& \le &2818537360434849382734382145310807703728251895897826621632&=&11410505395325664056^3 + 11005214445987377356^3 \\&&&=&12815060285137243042^3 + 8937735731741157614^3 \\&&&=&12993955521710159724^3 + 8548057588027946352^3 \\&&&=&13239637283805550696^3 + 7925282888762885516^3 \\&&&=&13600192974314732786^3 + 6716379921779399326^3 \\&&&=&14004053464077523769^3 + 4163116835733008647^3\\&&&=&14107248762203982476^3 + 2223357078845220136^3\\&&&=&14120022667932733461^3 + 1497369344185092651^3\\&&&=&14123302420417013824^3 + 1117386592077753452^3\\&&&=&14125159098802697120^3 + 657258405504578668^3\\&&&=&14125594971660931122^3 + 284485090153030494^3\end{matrix}


\begin{matrix}\operatorname{Ta}(12)& \le &73914858746493893996583617733225161086864012865017882136931801625152&=&33900611529512547910376^3 + 32696492119028498124676^3 \\&&&=&38073544107142749077782^3 + 26554012859002979271194^3\\&&&=&38605041855000884540004^3 + 25396279094031028611792^3 \\&&&=&39334962370186291117816^3 + 23546015462514532868036^3 \\&&&=&40406173326689071107206^3 + 19954364747606595397546^3 \\&&&=&41606042841774323117699^3 + 12368620118962768690237^3 \\&&&=&41912636072508031936196^3 + 6605593881249149024056^3 \\&&&=&41950587346428151112631^3 + 4448684321573910266121^3 \\&&&=&41960331491058948071104^3 + 3319755565063005505892^3 \\&&&=&41965847682542813143520^3 + 1952714722754103222628^3 \\&&&=&41965889731136229476526^3 + 1933097542618122241026^3 \\&&&=&41967142660804626363462^3 + 845205202844653597674^3\end{matrix}

Källor[redigera | redigera wikitext]

  1. ^ Artikeln om taxital på franska Wikipedia. Läst 15 maj 2013.

Källor[redigera | redigera wikitext]

Venn A intersect B.svg Matematikportalen – portalen för matematik på svenskspråkiga Wikipedia.