Stora primtal

Från Wikipedia
Hoppa till: navigering, sök
Graf över antalet siffror i det (dåvarande) största kända primtalet efter år, därefter den elektroniska datorn. Observera att den vertikala skalan är logaritmisk. Den röda linjen är den exponentiella kurvan för bästa passform: y = exp(0,188439 t - 362,591), där t är år.

Det största kända primtalet är 257885161 − 1 (februari 2015).[1] Det innehåller 17 425 170 siffror.

Euklides bevisade att det inte finns något största primtal – det vill säga att det finns oändligt antal primtal, så flera matematiker och amatörer fortsätter att söka efter stora primtal.

Många av de största kända primtalen är Mersenneprimtal. De tio största primtalen är (daterat februari 2013) Mersenneprimtal, medan det elfte största primtalet är det största kända icke-Mersenneprimtalet.[2] De 15 senaste största upptäckta primtalen är Mersenneprimtal.[2]

Genomförandet av Lucas–Lehmers primtalstest med snabb fouriertransform för Mersennetal är snabbt jämfört med andra primtalstest för andra typer av tal.

Nuvarande rekord[redigera | redigera wikitext]

Rekordet för största kända primtalet innehas för närvarande av 257885161 − 1 (innehåller 17 425 170 siffror). Det upptäcktes av Great Internet Mersenne Prime Search (GIMPS).

Priser[redigera | redigera wikitext]

Det finns flera priser som erbjuds av Electronic Frontier Foundation (EFF) för upptäckt av rekordstora primtal.[3]

Rekordet passerade en miljon siffror år 1999, och då gavs $50 000.[4] År 2008 passerade rekordet tio miljoner siffror, och då gavs $100 000 och en Cooperative Computing Award från Electronic Frontier Foundation.[3] Time kallade det den 29:e toppupptäckten år 2008.[5] Ytterligare priser erbjuds för upptäckten av ett primtal med minst hundra miljoner siffror och minst en miljard siffror.[3]

Historia[redigera | redigera wikitext]

Följande tabell visar utvecklingen av de största kända primtalet i stigande ordning. Här är Mn= 2n − 1 Mersennetalet med exponent n.

 Tal   Antal siffror   Upptäcktsår   Noteringar 
M127 39 1876 Upptäckt av Édouard Lucas
180×(M127)2 + 1 79 1951 Med hjälp av universitetets i Cambridge EDSAC-dator
M521 157 1952
M607 183 1952
M1279 386 1952
M2203 664 1952
M2281 687 1952
M3217 969 1957
M4423 1332 1961
M9689 2917 1963
M9941 2993 1963
M11213 3376 1963
M19937 6002 1971
M21701 6533 1978
M23209 6987 1979
M44497 13395 1979
M86243 25962 1982
M132049 39751 1983
M216091 65050 1985
391581×2216193 − 1 65087 1989
M756839 227832 1992
M859433 258716 1994
M1257787 378632 1996
M1398269 420921 1996
M2976221 895932 1997
M3021377 909526 1998
M6972593 2098960 1999
M13466917 4053946 2001
M20996011 6320430 2003
M24036583 7235733 2004
M25964951 7816230 2005
M30402457 9152052 2005
M32582657 9808358 2006
M43112609 12978189 2008
M57885161 17425170 2013

De tio största kända primtalen[redigera | redigera wikitext]

 #   Primtal   Upptäckare   Upptäcktsdatum   Antal siffror   Källa 
1 257885161 − 1 GIMPS 25 januari 2013 17425170 [2]
2 243112609 − 1 GIMPS 23 augusti 2008 12978189 [2]
3 242643801 − 1 GIMPS 12 april 2009 12837064 [6]
4 237156667 − 1 GIMPS 6 september 2008 11185272 [6]
5 232582657 − 1 GIMPS 4 september 2006 9808358 [6]
6 230402457 − 1 GIMPS 15 december 2005 9152052 [7]
7 225964951 − 1 GIMPS 18 februari 2005 7816230 [7]
8 224036583 − 1 GIMPS 15 maj 2004 7235733 [7]
9 220996011 − 1 GIMPS 17 november 2003 6320430 [7]
10 213466917 − 1 GIMPS 14 november 2001 4053946 [7]

GIMPS fann de 11 senaste posterna på ordinära datorer som drivs av deltagare runt om i världen.

Se även[redigera | redigera wikitext]

Källor[redigera | redigera wikitext]

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Largest known prime number, 12 mars 2014.


  1. ^ ”GIMPS Project Discovers Largest Known Prime Number, 257,885,161-1”. Mersenne Research, Inc.. http://www.mersenne.org/various/57885161.htm. 
  2. ^ [a b c d] Chris Caldwell, The largest known primes. Retrieved on 2013-02-05.
  3. ^ [a b c] ”Record 12-Million-Digit Prime Number Nets $100,000 Prize”. Electronic Frontier Foundation. Electronic Frontier Foundation. October 14, 2009. https://www.eff.org/press/archives/2009/10/14-0. Läst November 26, 2011. 
  4. ^ Electronic Frontier Foundation, Big Prime Nets Big Prize.
  5. ^ Best Inventions of 2008 - 29. The 46th Mersenne Prime”. Time (Time Inc). October 29, 2008. http://www.time.com/time/specials/packages/article/0,28804,1852747_1854195_1854157,00.html. Läst January 17, 2012. 
  6. ^ [a b c] Landon Curt Noll, Mersenne Prime Digits and Names. Retrieved on 2011-01-03.
  7. ^ [a b c d e] Samuel Yates, Chris Caldwell, The largest known primes. Retrieved on 2014-03-08.

Externa länkar[redigera | redigera wikitext]