DNA

Från Wikipedia
Hoppa till: navigering, sök
För andra betydelser, se DNA (olika betydelser).
Strukturen av DNA:s dubbelhelix. Atomerna i illustrationen är färgkodade efter respektive atomslag och ryggraden hos de båda strängarna är färgad orange. De olika kvävebasernas struktur visas i detalj längst ner till höger.
En roterande illustration av en bit av DNA:s dubbelhelix.

DNA (förkortning av engelskans deoxyribonucleic acid) eller deoxiribonukleinsyra är det kemiska ämne som bär den genetiska informationen, arvsmassan eller genomet, i samtliga av världens kända organismer (med undantag av RNA-virus). DNA-molekylen finns i identiska kopior i varje cell i en organism. Dess huvudsakliga funktion är att långtidsförvara information som påverkar organismernas utveckling och funktion. DNA liknas ibland vid programkod eller ett recept, eftersom det innehåller de instruktioner som behövs för att konstruera cellernas komponenter, RNA och proteiner. De delar av DNA-molekylen som ansvarar för tillverkningen av dessa komponenter kallas gener.

Molekylen består av två långa polymerer, i människan cirka 3 meter lång, bestående av en sekvens av enkla enheter kallade nukleotider. Det som ofta brukar kallas DNA-molekylens ryggrad utgörs av sockermolekyler och fosfat-grupper sammansatta med esterbindningar. De två polymererna är lindade runt varandra för att bilda en helix. Bundna till respektive sockermolekyl sitter vanligtvis en av de fyra typer av de molekyler som kallas kvävebaser. Det är denna sekvens av olika kvävebaser längs ryggraden som utgör den genetiska koden, vilken bestämmer ordningen av aminosyror i proteiner. Koden läses av genom att översätta delar av DNA:t till nukleinsyran RNA i en process som kallas transkription.

Inom cellen arrangeras DNA i långa strukturer som kallas kromosomer. Dessa kromosomer fördubblas i en process som kallas replikation innan cellerna delar sig. Informationen kan på så vis bevaras i båda de resulterande cellerna. I de celler som bygger upp eukaryota organismer, så som växter, djur, svampar och protister, finns det mesta av DNA:et i en cellkärna. En mindre del återfinns dock ofta i organismernas mitokondrier eller kloroplaster. Prokaryota celler (bakterier och arkéer) förvarar istället sitt DNA i cytoplasman. Inom kromosomerna finns proteiner så som histoner som packar och organiserar kromosomen till kromatin. Dessa kompakta strukturer reglerar interaktionerna mellan DNA och andra proteiner och kontrollerar på så vis bland annat i vilken grad olika delar av kromosomen transkriberas.

Funktion[redigera | redigera wikitext]

En gen i arvsmassan är en sekvens av nukleotider (se nedan) i en DNA-molekyl i någon av kromosomerna, som översätts till en motsvarande ordningsföljd av aminosyror i ett protein. Denna ordningsföljd avgör vilken form proteinet får och vilken funktion det kan fylla i kroppen. Översättningen från nukleotider i DNA till aminosyror i proteiner sker enligt den genetiska koden. För varje grupp om tre nukleotider i DNA-molekylen läggs vid översättningen en enda aminosyra till i det protein som tar form.[1]

Kemisk struktur[redigera | redigera wikitext]

DNA-molekylens schematiska uppbyggnad. Deoxyribos (ljusblått) och fosfat (blålila), är hoplänkat till två kedjor. Kvävebaserna (A,T,G,C) är sammanbundna med vätebindningar.

DNA är en nukleinsyra som är uppbyggd av två långa kedjor av nukleotider. Varje nukleotid kan sägas bestå av tre delar: en molekyl av sockerarten deoxiribos, en fosfatgrupp och en av de fyra kvävebaserna adenin (A), guanin (G), cytosin (C) och tymin (T). Kvävebasernas ordningsföljd i DNA-molekylen bestämmer uppbyggnaden av kroppens alla proteiner.[1]

DNA-molekylen kan finnas i flera något olika former. Hos vissa virus finns enkelsträngat DNA, ibland förkortat ssDNA (där ss står för ”single strand”) men den vanligaste är den dubbelspiral, så kallad dubbelhelix, av två nukleotidkedjor, som upptäcktes och beskrevs av Francis Crick och James Watson 1953[2]. Tillsammans med Maurice Wilkins mottog de nobelpriset i medicin 1962 för sin upptäckt. Dubbelsträngat DNA förkortas ibland dsDNA (där ds står för ”double strand”).[1]

I denna form som brukar kallas B består DNA-molekylen av två kedjor där nukleotidernas socker- och fosfatdelar är vända utåt och bildar två ”ryggrader” som är ihoptvinnade till en dubbel spiral. Kvävebaserna är vända inåt mot spiralernas mitt där de parvis, en bas från varje kedja, är hopkopplade med vätebindningar.[1]

Baserna kan inte kopplas ihop hur som helst: en adeninbas i den ena kedjan är alltid bunden till en tyminbas i den andra, detta genom två vätebindningar, medan en cytosinbas alltid är bunden till en guaninbas i den andra kedjan och detta genom tre vätebindningar. På så sätt är den ena kedjan den andra kedjans ”komplement”; från en kedja kan man alltid återskapa den andra. Detta är grunden för DNA-molekylens funktion som bärare av den genetiska informationen. Ett högre antal vätebindningar, alltså fler cytosin-guanin-kopplingar, gör molekylen mer värmetålig[3] och återfinns därför ofta hos termofila bakterier.[1]

DNA-molekylen följer Chargaffs regel, vilken säger att det alltid finns lika många adenosinbaser som tyminbaser och lika många cytosinbaser som guaninbaser.[4] Två nukleotider ihopkopplade via sina kvävebaser på detta sätt kallas ett baspar. Det går cirka tio baspar per varv i DNA-spiralen. Varje sådant varv har en höjd av cirka 3,4 nanometer, diametern på spiralen är cirka två nanometer.[5]

I alla högre organismer finns DNA-molekylerna i kombinationer med proteiner, histoner, i en tätpackad form som kallas kromatin i cellens kromosomer.[1]

Replikation[redigera | redigera wikitext]

DNA som delar sig och skapar en kopia av sig själv.
Huvudartikel: Replikation

Replikation är den process som dubblerar DNA-molekylen vid celldelningen så att en kopia av molekylen kan hamna i varje dottercell. På så sätt förs den genetiska informationen vidare från cellgeneration till cellgeneration.[1]

Replikationen i en eukaryot cell är omfångsrik och komplex. Flera olika enzym deltar i reaktionerna och det krävs både snabba och exakta metoder vilket uppfylls genom att en rad olika enzym verkar tillsammans.[1]

Vid celldelningen rätas dubbelspiralen i DNA-molekylen ut, och de två kedjorna skiljs åt likt de två delarna av ett blixtlås under inverkan av enzymet helikas. Med hjälp av ett flertal proteiner och enzymer varav det viktigaste är DNA-polymeras byggs en ny komplementär kedja upp genom att matchande nukleotider läggs på plats. Snart har två nya kompletta identiska DNA-molekyler bildats. De två nya DNA-molekylerna hamnar sedan i varsin dottercell.[1]

Oftast sker denna DNA-replikation utan problem och de båda nya DNA-molekylerna blir identiska med den ursprungliga. Ibland inträffar emellertid ett fel i kopieringen och den genetiska informationen har förändrats; en mutation har uppstått. Cellen har olika system för att upptäcka och reparera sådana felkopieringar, till exempel Mismatch repair, men det hjälper inte alltid. Olika former av yttre påverkan som till exempel högenergetisk strålning eller olika kemikalier ökar antalet mutationer.[1]

Transkription[redigera | redigera wikitext]

Den genetiska informationen i DNA-molekylen är uppdelad i bitar, gener, som var och en utgör ett recept på, en instruktion för, hur ett protein ska tillverkas. Informationsflödet, när receptet för ett protein ska överföras till cellens ribosomer där proteinsyntesen sker, går via RNA-kopior av genen.[1]

Denna process när DNA-information förs över till RNA-information kallas transkription. Vid transkriptionen översätts en gens bassekvens i en av DNA-kedjorna till motsvarande sekvens av baser i en RNA-molekyl. Den på så sätt skapade RNA-typen kallas budbärar-RNA eller mRNA (av engelska messenger-RNA), eftersom den fungerar som en ”budbärare” från DNA i cellkärnan till proteintillverkningen i ribosomerna. Till skillnad från DNA, som har de kemiska bokstäverna A, C, T och G, så har budbärar-RNA bokstaven U för uracil i stället för T, vilket ger A, C, U och G.[1]

I eukaryota celler sker transkriptionen till mRNA ofta i flera steg. I det första steget tillverkas en preliminär mRNA (pre-mRNA) genom direkt transkription av den ursprungliga DNA-sekvensen. Denna preliminära mRNA redigeras sedan genom att intron-sekvenser (sekvenser som inte kodar några aminosyror) tas bort. De kvarvarande bitarna, (exonerna), kombineras sedan ihop till den slutliga mRNA-sekvensen.[1]

Forskningshistoria[redigera | redigera wikitext]

Friedrich Miescher (18441895) beskrev första gången 1869 en substans som han kallade ”nuklein”, som han funnit i cellkärnor. Något senare lyckades han framställa detta ämne i ren form genom att utgå från laxsperma, och 1889 fick ämnet namnet ”nukleinsyra” av Mieschers elev Richard Altman. Man fann att ämnet endast existerade i kromosomerna.

Varken nukleinsyrans eller cellkärnas funktion var dock klarlagd vid denna tid. När Gregor Mendel upptäckte ärftlighetsprinciperna på 1860-talet, och när Mendels resultat återupptäcktes i början av 1900-talet, var det oklart var i cellerna arvsanlagen fanns, och vilka molekyler som var bärare av dem.

1930-talet genomförde Max Delbrück med flera experiment som visade att man genom att utsätta celler för röntgenstrålar kunde förändra de ärftliga egenskaperna hos cellerna. Det föreslogs att kromosomernas kemiska struktur på något sätt bestämde dessa ärftliga egenskaper. Precis hur denna kemiska struktur kunde påverka en organisms egenskaper och beteende föreföll oförklarligt vid denna tidpunkt. De kemiska undersökningarna av olika nukleinsyrepreparat gav alltid samma resultat i form av de fyra typerna av nukleotider i ungefär samma proportioner. Kromosomernas kemiska uppbyggnad föreföll alltså enkel och likformig vilket stod i stark kontrast till de levande organismernas komplexitet, mångfald och variation.

1950-talet pågick forskning om DNA-molekylens struktur endast på några få ställen. En grupp forskare i USA leddes av Linus Pauling. I England intresserade sig två grupper för problemet. Vid University of Cambridge fanns bland andra Francis Crick och James Watson och vid King’s College i London arbetade Maurice Wilkins och Rosalind Franklin med att med hjälp av röntgendiffraktion fastställa DNA-molekylens struktur. 1948 hade Pauling upptäckt att många proteiner hade en helixstruktur, och de första undersökningarna med röntgendiffraktion antydde att även DNA hade en sådan struktur, men någon detaljerad förståelse av molekylens uppbyggnad hade man ännu inte.

Crick och Watson försökte konstruera rimliga modeller utgående från kända fakta, men antalet möjligheter var fortfarande många. Ett genombrott skedde när den österrikiske kemisten Erwin Chargaff besökte Cambridge och beskrev ett av sina experiment. Han hade fastställt att prover av DNA inte alltid hade samma proportioner av de olika nukleotiderna, men att de alltid hade lika koncentration av adenin som av tymin och lika koncentration av guanin som av cytosin.[4] Crick och Watson började fundera på strukturer som innefattade två trådar med kompletterande nukeotidbaser bundna till varandra. Med hjälp av information från Rosalind Franklins röntgendiffraktionsbilder lyckades de finna en modell som stämde med all kända fakta. Den hade en spiralstruktur med två nanometers tjocklek och en höjd av cirka 3,4 nanometer per varv omfattande cirka tio baspar. De skyndade sig att publicera sina idéer innan Franklin själv hade offentliggjort några av sina resultat.

Det har efteråt blivit en kontroversiell fråga hur mycket Watson och Crick varit beroende av Franklins data för att komma fram till sin modell, och många har anklagat dem för att inte ge henne tillräckligt erkännande av hennes betydelse i upptäckten av DNA-molekylens struktur. Mest omdebatterat är det faktum att Wilkins tydligen visat Franklins bilder för Watson och Crick när Franklin inte själv var närvarande. Wilkins, Watson och Crick fick nobelpriset i medicin 1962 för sina upptäckter. Vid denna tidpunkt hade Franklin avlidit.

Watsons och Cricks modell väckte stor uppmärksamhet när den publicerats. Efter att ha kommit fram till sin modell 21 februari 1953, gjorde de sina första uttalanden den 28 februari. Den 25 april publicerades deras artikel A structure for Deoxiribose Nucleic Acid.[2] Forskningen om genetikens och molekylärbiologins grundvalar tog sedan fart. I en föreläsning 1957 redogjorde Crick för sina idéer om kopplingen mellan DNA, RNA och proteiner: ”DNA ger RNA ger protein”, något som har kommit att kallas molekylärbiologins ”centrala dogma”. [6]Crick och hans medarbetare fortsatte sedan under slutet av 1950-talet med arbetet med att knäcka den genetiska koden.

Användning och teknik[redigera | redigera wikitext]

Biologisk forskning och medicinska tillämpningar[redigera | redigera wikitext]

DNA-tester utförs genom DNA-sekvensiering och innebär kartläggning av DNA-informationen. DNA-tester används idag närmast rutinmässigt inom biologisk forskning, till exempel för att fastställa ursprung, sjukdomstillstånd eller arttillhörighet. DNA-delar av intresse massdupliceras först med hjälp av PCR-teknik [7]; därpå sekvenseras[8] den. Den erhållna DNA-sekvensen (oftast en gen) kan därefter användas för att jämföra sekvensen med motsvarande sekvens hos andra arter, eller andra individer av samma art.

Genetisk modifiering innebär att konstgjort DNA eller DNA från andra individer tillförs genomet hos en individ för att förändra eller tillföra egenskaper för individen.

Anlag för ärftliga sjukdomar kan diagnosticeras med DNA-tester.

Kriminalteknik och juridik[redigera | redigera wikitext]

Kriminaltekniker kan använda DNA-analys av blod, sperma, hud, saliv, nagel, tand eller hår för att identifiera brottslingar och ursprung. En bit DNA kan fungera som ett genetiskt fingeravtryck genom att delar av DNA-sekvensen som ofta varierar mellan individer jämförs. Detta kallas DNA-profilering[9]. Metoden är väldigt tillförlitlig när det gäller att matcha DNA.[10] Identifiering kompliceras däremot av att en brottsplats kan kontamineras med DNA från flera individer.[11] DNA-bevisning kan även användas för att fria vissa tidigare dömda brottslingar, som Darryl Hunt som satt nära tjugo år i fängelse som oskyldigt dömd.

DNA-profilering används också för att fastställa släktskap vid faderskapsutredningar.

Antropologi[redigera | redigera wikitext]

Genom att DNA muterar över tiden och sedan dessa förändringar ärvs av följande generationer, innehåller DNA historisk information och DNA-sekvenser från olika arter kan jämföras för att fastställa arternas fylogeni, deras genetiska släktskap.[12] På så sätt kan fylogenetiska träd ritas upp över hur olika arter är besläktade, och tidpunkt för när de förgrenades från varandra kan uppskattas.

Släktforskning[redigera | redigera wikitext]

Det här avsnittet är helt eller delvis baserat på material från engelskspråkiga Wikipedia, Genealogical DNA test, 5 december 2015.
Det här avsnittet är helt eller delvis baserat på material från engelskspråkiga Wikipedia, Genetic genealogy, 16 oktober 2015.

Privatpersoner såväl som arkeologer har börjat använda DNA-tester som metod för släktforskning, för att hitta eller verifiera släktskap, för att identifiera rötter i etniska folkgrupper och för att kartlägga migration. Ofta krävs dock omfattande traditionell släktforskning för att kunna dra slutsatser av DNA-testerna om släktskap.

Typer av DNA-tester[redigera | redigera wikitext]

Tre huvudtyper av DNA-tester förekommer, ur vilka olika typer av analys kan göras: Test av (1) mitokontriellt DNA (MtDNA), vilket enbart ärvs från mor till barn; (2) Y-kromosomens DNA (Y-DNA) som ärvs från far till son; samt (3) autosomalt DNA, som är en kombination av faderns och moderns DNA. I synnerhet Y-DNA-tester finns dessutom i olika storlekar. Större tester testar fler markörer, det vill säga undersöker fler potentiella mutationer, och ger bättre precision i uppskattningen av hur många generationer eller år tillbaka en mutation har inträffat. En mindre test kan inte skilja på nära och mer långväga släktskap, utan resulterar i fler träffar (testen hittar fler personer vars gensekvens skiljer med noll testade mutationer).

MtDNA- och Y-DNA-test — för bestämning av haplogrupp[redigera | redigera wikitext]

Mitokondriellt DNA (MtDNA) ärvs av både kvinnor och män, men enbart från moderslinjen, från mor, mormor, och så vidare, hos människan tillbaka till Mitokondrie-Eva. MtDNA finns i cellerna men tillhör inte kromosomerna och cellkärnan. Y-kromosomen är en allosom (könskromosom) hos bland annat däggdjur. Y-kromosomens DNA (YDNA) ärvs bara av män från faderslinjen, det vill säga från far, farfar, och så vidare, hos människan tillbaka till Y-kromosoms-Adam. För både MtDNA och YDNA gäller att de förändras enbart genom slumpmässiga mutationer som inträffar i genomsnitt med ett visst antal generationers mellanrum (olika frekvens i olika regioner av DNA:t), vilket kan utnyttjas för att uppskatta avstånd i släktskap vid ett stort antal generationer. MtDNA innehåller färre baspar än YDNA och muterar därför mer sällan, och möjliggör därför inte lika god precision i tidsuppskattningen som YDNA.

Individer med liknande gensekvens i YDNA:t eller MtDNA:t bildar en haplogrupp eller undergrupp. Befolkningen kan därmed delas upp i en hierarki, ett så kallat fylogenetiskt träd, av avgränsade MtDNA-haplogrupper. Män kan dessutom delas upp i en annan hierarki av YDNA-haplogrupper.

Haplogrupper kan betecknas med en lång kod, exempelvis MtDNA-haplogrupp I1a2b1, där I1 är en undergrupp till I, I1a en undergrupp till I1, I1a2 till I1a, och så vidare. En nackdel med denna längre kod är att den kan komma att förändras när tidigare okända mutationer och förgreningar upptäcks. Alternativt betecknas undergruppen med en kort kod, i vårt exempel I-Z2541, som innebär haplogroupp I med den undergrupp som har Z2541 som definierande mutation (se nedan hur mutationer betecknas).

Inom populationsgenetik kartläggs hur frekventa olika haplogrupper är i en population med rötter i en specifik region. Genom att identifiera en persons haplogrupp kan man identifiera hur fars- respektive morslinjen har förflyttat sig under mänsklighetens historia.

Autosomalt test — för bestämning av nära släktskap[redigera | redigera wikitext]

Autosomer är icke könskromosomer, vilka bildas när gensekvenser från moderns och faderns autosomala DNA slumpmässigt kopplas ihop genom en process som kallas genetisk rekombination och överkorsning. Även slumpmässiga mutationer kan inträffa, vanligen i enstaka baspar. Jämförelse av personers automala DNA kan användas för att upptäcka släktskap även till personer som inte tillhör moderslinjen eller faderslinjen, men kan bara användas för att identifiera släktskap några få generationer tillbaka. Likheterna mellan två eller flera personer kan visas med en kromosomkarta. Om två personer med likheter i DNA:t har överkorsning på samma position i en kromosom indikerar det att överkorsningen uppstod vid samma rekombinationstillfälle och att personerna således tillhör samma släktgren.

Autosomalt test kombineras ofta med test av X-kromosomens gensekvens, som inte kan ärvas från far till son, men från far till dotter och från mor till son eller dotter. Genetisk rekombination inträffar mer sällan i X-kromosomen än i de autosomala kromosomerna.

Två personer som är nära släkt har ofta långa identiska gensekvenser i de autosomala kromosomerna. Längden av de identiska gensekvenserna kan mätas i antal baspar, alternativt i antal centimorgan, och kan användas för att uppskatta närheten i släktskap mellan personerna. Likheter är emellertid resultat av slumpmässiga processer, och är inget exakt mått på avståndet i släktskap. I populationer från isolerade regioner kan det finnas släktskap många vägar till samma person, och därmed många korta identiska gensekvenser även vid långväga närmaste släktskap, och då kan likheter i autosomalt DNA ge intryck av närmare släktskap än verkligheten. Längden av den längsta identiska sekvensen kan då vara ett något säkrare mått för att uppskatta närmaste släktrelation än den totala längden av lika sekvenser, korta såväl som långa.


Mutationer[redigera | redigera wikitext]

Mutationer är slumpmässiga förändringar av DNA-sekvensen. De allra flesta mutationerna repareras av cellerna själva. En mutation i könscellerna som inte repereras, utan sprids genom fortplantningen till nya individer som överlever och i sin tur kan fortplanta sig förorsakar en alternativ allel, det vill säga en ny variant av gensekvensen som får spridning i befolkningen. Vissa alleler ger upphov till nya egenskaper (en ny morf, det vill säga form, inom arten), medan andra saknar biologisk betydelse.

Uppstår allelen i Y-kromosomen eller i MtDNA så kan det fylogenetiska trädet förgrena sig i den ursprungliga haplogruppen och en undergrupp till densamma. Nya alleler uppstår i genomsnitt var 130:onde år i människans Y-kromosom längs en viss faderslinje. Alleller uppstår genomsnittligen med 20 000 års intervall i människans MtDNA längs en viss moderslinje. Frekvensen beror av vilken region i kromosomen man studerar. Exempelvis är frekvensen av alleler mer vanliga i det icke-kodande DNA:t, eftersom mutationer där mer ofta upphov till levnadsdugliga individer.

Den vanligaste formen av allel är en SNP, det vill säga en avvikelse i ett enstaka baspar på en specifik position (loci). En bokstav (G, T, A eller C) har således bytts ut mot en annan. SNP:er som hittills bara upptäckts hos en testperson i världen kallas privata. En haplogrupp motsvarar en sekvens av SNP:er. Haplogruppen definieras genom den sist inträffade icke-privat SNP:n, som kallas "definierande" eller "avslutande" (eng. terminating) SNP.

En annan typ av allel som kallas STR (Short Tandem Repeat) innebär att en repetition av en genföljd tas bort eller läggs till i en mikrosatellit. Haplogrupp och SNP:er kan predikteras (uppskattas) baserat på STR:er.

Enklare YDNA-tester kartlägger enbart några tiotal STR-markörer som är särskiljande för vanligaste haplogrupperna. Större ydnatester kartlägger istället ett stort antal SNP:er. Den som har gjort en liten YDNA-test kan komplettera med test av specifika SNP:er, eller av ett standardpaket av SNP:er som är vanliga inom den haplogrupp man har blivit predikterad att tillhöra. En sådan stegvis strategi kan för vissa personer vara billigare än att göra ett stort eller komplett YDNA-test. Ett komplett YDNA-test brukar emellertid innebära att man gör ett bidrag till forskningen i form av upptäckt av nya hittills okända SNP:er och förgreningar av trädet.

Varje SNP-mutation har en kod enligt standarden Cambridge Reference Sequence (CRS) från 1981, som ersattes med revised CRS (rCRS) 1999, som beskriver avvikelser jämfört med en referensperson med europeisk härkomst, inom haplogroupp H2a2a1. Standarden Reconstructed Sapiens Reference Sequence (RSRS) från 2012 beskriver istället MtDNA-mutationens avvikelse från mitokondriske Eva.[13]

Varje vanligt förekommande STR i YDNA har fått en kod som börjar på DYS, DYZ eller DYF följt av ett nummer.

Vissa SNP:er och haplogrupper är unika för personer med rötter i geografiskt isolerade regioner, kulturer och etniska folkgrupper, exempelvis vissa kontinenter. Analys av DNA kan visa i vilka regioner en person sannolikt har sina rötter. Personer grupperas genom statistiska metoder (klusteranalys) i genetiska kluster, som ofta motsvarar rötter i kontinenter och geografiska regioner som länge varit isolerade. Dock kan man inte på individnivå entydigt avgöra vilken kontinent någon har rötter genom att titta på haplogrupp eller SNP:er - vissa haplogrupper förekommer på flera kontinenter - på samma sätt som att människan inte kan delas upp i raser i zoologisk mening utifrån utseende på ett väldefinierat sätt.

Se även[redigera | redigera wikitext]

Referenser[redigera | redigera wikitext]

  1. ^ [a b c d e f g h i j k l m] Alberts et al. 2008. Molecular biologi of the cell. Garland Science, Taylor & Francis Group, LLC.
  2. ^ [a b] J.D. Watson, F.H.C. Crick. 1953. A Structure for Deoxyribose Nucleic Acid. Nature 171: 737-738.
  3. ^ Chalikian T, Völker J, Plum G, Breslauer K (1999). "A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques". Proc Natl Acad Sci USA 96 (14): 7853–8.
  4. ^ [a b] Chargaff E (1950). "Chemical specificity of nucleic acids and mechanism of their enzymatic degradation". Experientia 6 (6): 201–209.
  5. ^ Mandelkern M, Elias J, Eden D, Crothers D (1981). "The dimensions of DNA in solution". J Mol Biol 152 (1): 153–61.
  6. ^ Crick, F.H.C. On degenerate templates and the adaptor hypothesis (PDF). genome.wellcome.ac.uk (Lecture, 1955). Läst 13 mars 2010
  7. ^ K.B. Mullis, F.A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155: 335-350.
  8. ^ F. Sanger, S. Nicklen, A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA 74: 5463-5467.
  9. ^ Jeffreys A, Wilson V, Thein S (1985). "Individual-specific 'fingerprints' of human DNA". Nature 316 (6023): 76–9.
  10. ^ Collins A, Morton N (1994). "Likelihood ratios for DNA identification" (PDF). Proc Natl Acad Sci USA 91 (13): 6007–11.
  11. ^ Weir B, Triggs C, Starling L, Stowell L, Walsh K, Buckleton J (1997). "Interpreting DNA mixtures". J Forensic Sci 42 (2): 213–22.
  12. ^ Wray G; Martindale, Mark Q. (2002). "Dating branches on the tree of life using DNA". Genome Biol 3 (1): REVIEWS0001.
  13. ^ http://dna-explained.com/2012/07/15/the-crs-and-the-rsrs/