Uran

Från Wikipedia
Hoppa till: navigering, sök
Uran
Nummer
92
Tecken
U
Grupp
N/A
Period
7
Block
f
Nd

U

Uqq
ProtaktiniumUranNeptunium
[Rn] 5f3 6d1 7s2
92U
   

En skiva av uran med talet 2068 handskrivet
En skiva av uran med talet 2068 handskrivet


Emissionsspektrum
Emissionsspektrum
Generella egenskaper
Utseende Silvrig metallisk
Fysikaliska egenskaper
Aggregationstillstånd Fast
Smältpunkt 1405 K (1132 °C)
Kokpunkt 4407 K (4134 °C)
Molvolym 12,49 × 10-6 m3/mol
Smältvärme 15,48 kJ/mol
Ångbildningsvärme 477 kJ/mol
Atomära egenskaper
Atomradie 175 pm
Jonisationspotential Första: 597,6 kJ/mol
Andra: 1420 kJ/mol
(Lista)
Elektronkonfiguration
Elektronkonfiguration [Rn] 5f3 6d1 7s2
e per skal 2, 8, 18, 32, 21, 9, 2
Electron shell 092 Uranium - no label.svg
Kemiska egenskaper
Oxidationstillstånd 4, 6 (svag bas)
Elektronegativitet 1,38 (Paulingskalan)
Diverse
Kristallstruktur ortorombisk
Ljudhastighet 3155 m/s
Elektrisk konduktivitet 3,8·106 A/(V × m)
Identifikation
Historia
Stabilaste isotoper
Huvudartikel: Uranisotoper
Nuklid NF t1/2 ST SE (MeV) SP
232U {syn.} 68,9 år α och SF 5,414 228Th
233U {syn.} 159200 år α och SF 4,909 229Th
234U 0,006 % 245500 år α och SF 4,859 230Th
235U 0,72 % 7,038·108 år α och SF 4,679 231Th
236U {syn.} 2,342·107 år α och SF 4,572 232Th
238U 99,275 % 4,468·109 år α och SF 4,270 234Th
Säkerhetsinformation
Globalt harmoniserat system för klassifikation och märkning av kemikalier
GHS-märkning av farliga ämnen enligt EU:s förordning 1272/2008 (CLP) på grundval av följande källa: [1]
06 – Giftig
Giftig
08 – Hälsofarlig
Hälsofarlig





H-fraser H330, H300, H373, H413
P-fraser P?
EU-märkning av farliga ämnen
EU-märkning av farliga ämnen enligt EU:s förordning 1272/2008 (CLP) på grundval av följande källa: [1]
Mycket giftig
Mycket giftig
(T+)






R-fraser R26/28, R33, R53
S-fraser S(1/2), S20/21, S45, S61
Övriga faror
Radioaktiv
Radioaktiv
SI-enheter och STP används om inget annat anges.

Uran är ett radioaktivt grundämne som tillhör aktiniderna. Uran, som är en metall, har det högsta atomnumret av de naturliga grundämnena.

Allmänt[redigera | redigera wikitext]

Ämnet uran upptäcktes år 1789 av den tyske apotekaren Martin Heinrich Klaproth. Dess CAS-nummer är 7440-61-1. Att uran har det högsta atomnumret betyder dock inte ämnet är det tyngsta mätt i densitet. I detta avseende ligger uran endast på sjunde plats och kommer efter bland annat osmium och iridium. Uran är mer eller mindre radioaktivt beroende på isotop.

Uranisotoper[redigera | redigera wikitext]

Naturligt uran består av 99,28 procent 238U, 0,72 procent 235U och 0,006 procent 234U[2][3]. Härutöver är följande isotoper av vikt i kärntekniska sammanhang: 233U, 236U, 237U och 239U.

Härvid kan man notera att 238U inte är fissilt, men om det utsätts för snabba neutroner, vars energi är större än 1 MeV, så kan denna isotop likväl fissionera, dock utan att starta en kedjereaktion.

Användning[redigera | redigera wikitext]

Kärnkraft[redigera | redigera wikitext]

Huvudartikel: Kärnkraft

Den viktigaste användningen av uran är som bränsle i kärnkraftverk. Uran som ska användas i de flesta typer av kärnkraftverk isotopanrikas i en kostsam process [källa behövs] så att halten 235U uppgår till omkring 3 %. Vissa speciella typer av kärnreaktorer, som de som används i atomubåtar, kräver 50-90 % eller mer 235U (även kallat HEU, highly enriched uranium, "höganrikat uran"). Vissa typer av kärnreaktorer, som använder tungt vatten eller grafit som moderator, kan använda naturligt uran direkt. Det överblivna 238U kallas utarmat uran och kan inte användas till kärnklyvning med termiska neutroner. Det kan dock observeras att 238U, som laddas i en kärnreaktor, kommer att delvis transmuteras till plutonium. Vissa av plutoniumets isotoper är klyvbara och bidrar till reaktorns energiproduktion. I en upparbetningsprocess är det sedan tekniskt möjligt att separera plutoniumet från uran och klyvningsprodukterna. Ju längre uranbränslet varit i härden desto sämre blir utseparerat plutonium för tillverkningen av fissionsladdningar, vilka kan utgöra en del i ett flertal olika typer av kärnvapen.

Kärnvapen[redigera | redigera wikitext]

Huvudartikel: Kärnvapen

Eftersom 235U är fissilt så kan detta ämne användas för att tillverka fissionsvapen (exempelvis Little boy, atombomben som fälldes över Hiroshima), emellertid torde plutonium vara det helt dominerande ämnet i dessa sammanhang. Dock är 238U, antingen som naturligt uran eller som utarmat uran, trots att det inte är fissilt, synnerligen betydelsefullt för tillverkningen av dagens kärnvapen. Med undantag av de allra minsta av dessa (taktiska kärnvapen) så utgörs de av fusionsvapen. Dessa fungerar oftast i tre steg: "fission-fusion-fission", vilket innebär att en fissionladdning fungerar som en "tändhatt" för fusionsladdningen, som genererar snabba neutroner, vars energi är större än 1 MeV, vilket medför att även 238U kommer att fissionera i vapnets tredje steg, utan att ge upphov till någon kedjereaktion.

Övrig användning[redigera | redigera wikitext]

I begränsad omfattning används uran på grund av sin höga densitet som tyngd och ballast i olika sammanhang. Utarmat uran används på grund av sin densitet i pilprojektiler till moderna stridsvagnskanoner. Uran har, som urangult och uranockra, använts som pigment vid framställningen av färg. Uranföreningar har även använts för att färga glas.

Uran i världen[redigera | redigera wikitext]

OECD/NEA och IAEA uppskattar i en gemensam rapport den kända globala tillgången av konventionell uran som kan brytas för mindre än 130 dollar per kg till 4,7 miljoner ton. Baserat på produktionen 2004 av el från kärnkraft räcker dessa kända tillgångar till 85 års produktion. Med bridreaktorteknologi räcker de i 2 500 år. Om hänsyn tas till den totala tillgången av exploaterbart uran, det vill säga både identifierade och oidentifierade tillgångar, uppskattar man i rapporten att 2004 års uranbaserade elproduktion skulle kunna upprätthållas i 20 000 år med bridreaktorer[4][5].

Uran i Sverige[redigera | redigera wikitext]

Sveriges berggrund är rik på uran. Flera olika bergarter är kända för sina höga uranhalter, som exempel kan nämnas alunskiffer och olika graniter. Under åren 1965-1969 (och i försöksverksamhet fram till 1981) utvanns svenskt uran vid Ranstadsverket, 13 km utanför Skövde. Sedan 2005 pågår åter prospektering för uranbrytning i Sverige.

Under 1970- och 1980-talen gjorde staten omfattande inventeringar av förekomsten av uran i Sverige. I de flesta andra länder har någon motsvarande inventering inte skett och de urantillgångar som finns med i officiell statistik är därför oftast bara de som prospekteringsbolag identifierat.

I OECD:s, IAEA:s och NEA:s statistik över världens brytvärda uranreserver är Sveriges andel mindre än 1 procent.

Källor[redigera | redigera wikitext]

  1. ^ [a b] Ur CLP-förordningen gällande CAS-Nr. 7440-61-1 i IFA:s GESTIS-ämnesdatabas (Kräver JavaScript) (ty, en).
  2. ^ Canadian Journal of Chemistry. ”THE NATURAL ABUNDANCES OF THE URANIUM ISOTOPES” (på engelska). http://www.nrcresearchpress.com/doi/abs/10.1139/v56-039. Läst 17 september 2011. 
  3. ^ URAN. ”Om uran”. http://uran.nl/om.php. Läst 17 september 2011. 
  4. ^ ”Global Uranium Resources to Meet Projected Demand” (på engelska). http://www.iaea.org/NewsCenter/News/2006/uranium_resources.html. 
  5. ^ ”Uranium 2005: Resources, Production and Demand” (på engelska). http://www.savecrowbutte.org/files/6606031E.PDF. 

Se även[redigera | redigera wikitext]